Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(11): e0224288, 2019.
Article in English | MEDLINE | ID: mdl-31738797

ABSTRACT

Bioinformatics, a discipline that combines aspects of biology, statistics, mathematics, and computer science, is becoming increasingly important for biological research. However, bioinformatics instruction is not yet generally integrated into undergraduate life sciences curricula. To understand why we studied how bioinformatics is being included in biology education in the US by conducting a nationwide survey of faculty at two- and four-year institutions. The survey asked several open-ended questions that probed barriers to integration, the answers to which were analyzed using a mixed-methods approach. The barrier most frequently reported by the 1,260 respondents was lack of faculty expertise/training, but other deterrents-lack of student interest, overly-full curricula, and lack of student preparation-were also common. Interestingly, the barriers faculty face depended strongly on whether they are members of an underrepresented group and on the Carnegie Classification of their home institution. We were surprised to discover that the cohort of faculty who were awarded their terminal degree most recently reported the most preparation in bioinformatics but teach it at the lowest rate.


Subject(s)
Biology/education , Computational Biology/education , Curriculum , Faculty/statistics & numerical data , Female , Humans , Male , Motivation , Students/psychology , Surveys and Questionnaires/statistics & numerical data , United States
2.
Nat Microbiol ; 4(1): 55-61, 2019 01.
Article in English | MEDLINE | ID: mdl-30397342

ABSTRACT

Small bacterial and archaeal genomes provide insights into the minimal requirements for life1 and are phylogenetically widespread2. However, the precise environmental pressures that constrain genome size in free-living microorganisms are unknown. A study including isolates has shown that thermophiles and other bacteria with high optimum growth temperatures often have small genomes3. It is unclear whether this relationship extends generally to microorganisms in nature4,5 and more specifically to microorganisms that inhabit complex and highly variable environments, such as soils3,6,7. To understand the genomic traits of thermally adapted microorganisms, here we investigated metagenomes from a 45 °C gradient of temperate-to-thermal soils that lie over the ongoing Centralia, Pennsylvania (USA) coal-seam fire. We found that hot soils harboured distinct communities with small genomes and small cell sizes relative to those in ambient soils. Hot soils notably lacked genes that encode known two-component regulatory systems, and antimicrobial production and resistance genes. Our results provide field evidence for the inverse relationship between microbial genome size and temperature in a diverse, free-living community over a wide range of temperatures that support microbial life.


Subject(s)
Bacteria/genetics , Genome Size/genetics , Genome, Archaeal/genetics , Genome, Bacterial/genetics , Hot Temperature , Soil Microbiology , Coal/microbiology , Environmental Microbiology , Pennsylvania , Soil/chemistry , Wildfires
3.
PLoS One ; 13(6): e0196878, 2018.
Article in English | MEDLINE | ID: mdl-29870542

ABSTRACT

Although bioinformatics is becoming increasingly central to research in the life sciences, bioinformatics skills and knowledge are not well integrated into undergraduate biology education. This curricular gap prevents biology students from harnessing the full potential of their education, limiting their career opportunities and slowing research innovation. To advance the integration of bioinformatics into life sciences education, a framework of core bioinformatics competencies is needed. To that end, we here report the results of a survey of biology faculty in the United States about teaching bioinformatics to undergraduate life scientists. Responses were received from 1,260 faculty representing institutions in all fifty states with a combined capacity to educate hundreds of thousands of students every year. Results indicate strong, widespread agreement that bioinformatics knowledge and skills are critical for undergraduate life scientists as well as considerable agreement about which skills are necessary. Perceptions of the importance of some skills varied with the respondent's degree of training, time since degree earned, and/or the Carnegie Classification of the respondent's institution. To assess which skills are currently being taught, we analyzed syllabi of courses with bioinformatics content submitted by survey respondents. Finally, we used the survey results, the analysis of the syllabi, and our collective research and teaching expertise to develop a set of bioinformatics core competencies for undergraduate biology students. These core competencies are intended to serve as a guide for institutions as they work to integrate bioinformatics into their life sciences curricula.


Subject(s)
Computational Biology/education , Mental Competency , Problem-Based Learning , Adolescent , Adult , Female , Humans , Male , United States
4.
FEMS Microbiol Lett ; 365(10)2018 05 01.
Article in English | MEDLINE | ID: mdl-29688343

ABSTRACT

Microbiology increasingly relies upon bioinformatics to understand complex microbial interactions. Nevertheless, biology undergraduates often lack the basic quantitative and computer-based skills required for bioinformatics analyses. To address these issues, the course module 'A Town on Fire! 16S rRNA Gene Amplicon Analysis of Microbial Communities Overlying the Centralia, PA Mine Fire' was developed for an undergraduate microbiology lecture course. In this module, microbiology students used Quantitative Insights into Microbial Ecology to perform taxonomic, phylogenetic and statistical analyses on bacterial communities from three hot mine fire-impacted surface soils using 16S rRNA gene amplicon sequences. Pre- and post-module assessment data for each of 2 years were compiled, and indirect assessment indicated that students' confidence regarding their ability to perform bioinformatics analyses, as well as their ability to interpret bioinformatics data both increased, as did their enthusiasm for bioinformatics. Direct assessment demonstrated that students' understanding of topics that they actually used in the module, such as the statistical analyses that underlie bioinformatics investigations and the ability to infer phylogenetic relationships, improved during the module, but that their underlying understanding of techniques that they did not directly perform, such as sequencing and library construction, did not.


Subject(s)
Bacteria/genetics , Computational Biology/education , Microbiology/education , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Adult , Bacteria/classification , Bacteria/isolation & purification , Female , Humans , Male , Metagenomics , Microbiota , Phylogeny , Soil Microbiology , Students , Teaching , Young Adult
5.
ISME J ; 11(6): 1447-1459, 2017 06.
Article in English | MEDLINE | ID: mdl-28282042

ABSTRACT

Press disturbances are stressors that are extended or ongoing relative to the generation times of community members, and, due to their longevity, have the potential to alter communities beyond the possibility of recovery. They also provide key opportunities to investigate ecological resilience and to probe biological limits in the face of prolonged stressors. The underground coal mine fire in Centralia, Pennsylvania has been burning since 1962 and severely alters the overlying surface soils by elevating temperatures and depositing coal combustion pollutants. As the fire burns along the coal seams to disturb new soils, previously disturbed soils return to ambient temperatures, resulting in a chronosequence of fire impact. We used 16S rRNA gene sequencing to examine bacterial and archaeal soil community responses along two active fire fronts in Centralia, and investigated the influences of assembly processes (selection, dispersal and drift) on community outcomes. The hottest soils harbored the most variable and divergent communities, despite their reduced diversity. Recovered soils converged toward similar community structures, demonstrating resilience within 10-20 years and exhibiting near-complete return to reference communities. Measured soil properties (selection), local dispersal, and neutral community assembly models could not explain the divergences of communities observed at temperature extremes, yet beta-null modeling suggested that communities at temperature extremes follow niche-based processes rather than null. We hypothesize that priority effects from responsive seed bank transitions may be key in explaining the multiple equilibria observed among communities at extreme temperatures. These results suggest that soils generally have an intrinsic capacity for robustness to varied disturbances, even to press disturbances considered to be 'extreme', compounded, or incongruent with natural conditions.


Subject(s)
Archaea/genetics , Bacteria/genetics , Coal Mining , Fires , Soil Microbiology , Archaea/isolation & purification , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...