Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
J Phys Chem Lett ; 11(9): 3601-3607, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32302143

ABSTRACT

Using time-lapsed ambient-pressure X-ray photoelectron spectroscopy, we investigate the thermal oxidation of single-crystalline Ir(100) films toward rutile IrO2(110) in situ. We initially observe the formation of a carbon-free surface covered with a complete monolayer of oxygen, based on the binding energies of the Ir 4f and O 1s core level peaks. During a rather long induction period with nearly constant oxygen coverage, the work function of the surface changes continuously as sensed by the gas phase O 1s signal. The sudden and rapid formation of the IrO2 rutile phase with a thickness above 3 nm, manifested by distinct binding energy changes and substantiated by quantitative XPS analysis, provides direct evidence that the oxide film is formed via an autocatalytic growth mechanism that was previously proposed for PbO and RuO2.

2.
Rev Sci Instrum ; 91(2): 023103, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32113422

ABSTRACT

A new endstation to perform operando chemical analysis at solid-liquid interfaces by means of ambient pressure x-ray photoelectron spectroscopy (APXPS) is presented. The endstation is located at the Swiss Light Source and can be attached to the soft x-ray in situ spectroscopy beamline (X07DB) for solid-gas type experiments and to a tender x-ray beamline (PHOENIX I) for solid-liquid interface experiments. The setup consists of three interconnected ultrahigh vacuum chambers: one for sample preparation using surface science techniques, the analysis chamber for APXPS experiments, and an entry-lock chamber for sample transfer across the two pressure regimes. The APXPS chamber is designed to study solid-liquid interfaces stabilized by the dip and pull method. Using a three-electrode setup, the potential difference across the solid-electrolyte interface can be controlled, as is demonstrated here using an Ir(001) electrode dipped and pulled from a 0.1M KOH electrolyte. The new endstation is successfully commissioned and will offer unique opportunities for fundamental studies of phenomena that take place at solid-liquid interfaces and that are relevant for fields such as electrochemistry, photochemistry, or biochemistry, to name a few.

SELECTION OF CITATIONS
SEARCH DETAIL
...