Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
AAPS PharmSciTech ; 25(1): 24, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267745

ABSTRACT

Previous work demonstrated that roller compaction of a 40%w/w theophylline-loaded formulation resulted in granulate consisting of un-compacted fractions which were shown to constitute between 34 and 48%v/v of the granulate dependent on processing conditions. The active pharmaceutical ingredient (API) primary particle size within the un-compacted fraction was also shown to have undergone notable size reduction. The aim of the current work was to test the hypothesis that the observations may be more indicative of the relative compactability of the API due to the formulation being above the percolation threshold. This was done by assessing the impact of varied API loads in the formulation on the non-granulated fraction of the final granulate and the extent of attrition of API particles within the non-granulated fraction. The influence of processing conditions for all formulations was also investigated. The results verify that the observations, both of this study and the previous work, are not a consequence of exceeding the percolation threshold. The volume of un-compacted material within the granulate samples was observed to range between 34.7 and 65.5% depending on the API load and roll pressure, whilst the API attrition was equivalent across all conditions.


Subject(s)
Theophylline , Particle Size
2.
J Pharm Sci ; 113(5): 1285-1298, 2024 May.
Article in English | MEDLINE | ID: mdl-38092288

ABSTRACT

Titanium dioxide (TiO2) is used primarily as an opacifier in solid dosage forms and is present in the majority of tablet and capsule dosage forms on the market. The IQ* TiO2 Working Group has previously shown that titanium dioxide has unique properties which are necessary for its function in these formulations and noted that, as the potential replacements lack the semi-conductor properties, high refractive index and whiteness of E171, it might be hard to replicate these properties with alternative materials. In this paper we detail the results of readiness surveys and practical assessments that have been conducted with alternative materials by IQ member companies. A range of technical challenges and regulatory hurdles were identified which mean that, in the short term, it may be difficult to replace titanium dioxide with the currently available alternative materials while readily achieving the same drug product quality attributes, especially for some of the marketed formulations that titanium dioxide is currently used for. We note the higher technical complexity, due to the variability, color fading and identified scale up risk, of E171 free film coatings and the likely impact on development costs and timelines. We also highlight several regulatory hurdles that would have to be overcome if a titanium dioxide replacement was required for some markets but was not mandated by others.


Subject(s)
Nanoparticles , Titanium , Particle Size , Food Additives
3.
AAPS PharmSciTech ; 24(7): 209, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37817056

ABSTRACT

Sticking to tablet punches is a major issue during drug product manufacturing. Research has shown that sticking involves the interrelationship of powder properties, compression force, length of manufacturing runs and punch quality. Here, we present a novel non-destructive methodology to study the surface metrology of punches to monitor them over their lifetime. This investigation used a non-contact laser interferometer to characterise roughness of commercial standard S7 steel punches coated with chrome that were originally used for commercial scale production that developed a sticking issue. During the development, this phenomenon had not been observed and was not considered a scale-up risk. The profilometer was used to examine the complete surface of these punches to investigate whether they met the acceptability criteria based on BS_ISO_18804 tooling standard. To improve data analysis during changeover, a 3D-printed holder was designed to enable analysis with minimal set-up requirements. Upon investigation, the punches were found to be of an unacceptable roughness and, particularly rough areas of the punch surface profiled, correlated well with areas of visually pronounced sticking. This non-destructive method can be used to produce a more detailed characterisation of punch roughness to ensure surfaces are of an acceptable quality after treatment with coatings.


Subject(s)
Mechanical Phenomena , Adhesiveness , Tablets , Pressure , Surface Properties , Drug Compounding/methods
4.
Pharmaceutics ; 15(8)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37631368

ABSTRACT

Hypromellose, a widely used polymer in the pharmaceutical industry, is available in several grades, depending on the percentage of substitution of the methoxyl and hydroxypropyl groups and molecular weight, and in various functional forms (e.g., suitable for direct compression tableting). These differences can affect their physicomechanical properties, and so this study aims to characterise the particle size and mechanical properties of HPMC K100M polymer grades from four different vendors. Eight polymers (CR and DC grades) were analysed using scanning electron microscopy (SEM) and light microscopy automated image analysis particle characterisation to examine the powder's particle morphology and particle size distribution. Bulk density, tapped density, and true density of the materials were also analysed. Flow was determined using a shear cell tester. Flat-faced polymer compacts were made at five different compression forces and the mechanical properties of the compacts were evaluated to give an indication of the powder's capacity to form a tablet with desirable strength under specific pressures. The results indicated that the CR grades of the polymers displayed a smaller particle size and better mechanical properties compared to the DC grade HPMC K100M polymers. The DC grades, however, had better flow properties than their CR counterparts. The results also suggested some similarities and differences between some of the polymers from the different vendors despite the similarity in substitution level, reminding the user that care and consideration should be given when substitution is required.

5.
Int J Pharm ; 635: 122743, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36804520

ABSTRACT

The aim of this work was to develop approaches to utilize whole particle distributions for both particle size and particle shape parameters to map the full range of particle properties in a curated dataset. It is hoped that such an approach may enable a more complete understanding of the particle landscape as a step towards improving the link between particle properties and processing behaviour. A 1-dimensional principal component analysis (PCA) approach was applied to create a 'morphological distribution landscape'. A dataset of imaged APIs, intermediates and excipients encompassing particle size, particle shape (elongation, length and width) and distribution shape was curated between 2008 and 2022. The curated dataset encompassed over 200 different materials, which included over 150 different APIs, and approximately 3500 unique samples. For the purposes of the current work, only API samples were included. The morphological landscape enables differentiation of materials of equivalent size but varying shape and vice versa. It is hoped that this type of approach can be utilised to better understand the influence of particle properties on pharmaceutical processing behaviour and thereby enable scientists to leverage historical knowledge to highlight and mitigate risks associated to materials of similar morphological nature.


Subject(s)
Particle Size
6.
J Pharm Sci ; 112(1): 264-271, 2023 01.
Article in English | MEDLINE | ID: mdl-36270539

ABSTRACT

Quality control is of critical importance in manufacturing of lyophilized drug product, which is accomplished by monitoring the process parameters. The residual gas analyzer has emerged as a useful tool in determination of endpoint for primary and secondary drying in lyophilization process as well as leak detection in vacuum systems. This study presents the application of in situ RGA to quantify outgassing rates of species released from aqueous inorganic and organic ammonium salt formulations throughout the freeze-drying process. The determination of ammonia outgassing conditions aids in ensuring product quality where ammonia release is an indication for loss of co-solvent or degradation of active pharmaceutical ingredients (APIs). Data analysis methods are developed to determine ammonia presence under various process conditions. In-situ real time monitoring of vapor dynamics enables RGA to be used as a tool to characterize counter-ion loss throughout the freeze-drying cycle.


Subject(s)
Ammonium Compounds , Chemistry, Pharmaceutical , Chemistry, Pharmaceutical/methods , Ammonia , Freeze Drying/methods , Drug Compounding/methods , Gases , Temperature
7.
AAPS PharmSciTech ; 23(8): 286, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36261755

ABSTRACT

Computational modeling, machine learning, and statistical data analysis are increasingly utilized to mitigate chemistry, manufacturing, and control failures related to particle properties in solid dosage form manufacture. Advances in particle characterization techniques and computational approaches provide unprecedented opportunities to explore relationships between particle morphology and drug product manufacturability. Achieving this, however, has numerous challenges such as producing and appropriately curating robust particle size and shape data. Addressing these challenges requires a harmonized strategy from material sampling practices, characterization technique selection, and data curation to provide data sets which are informative on material properties. Herein, common sources of error in particle characterization and data compression are reviewed, and a proposal for providing robust particle morphology (size and shape) data to support modeling efforts, approaches for data curation, and the outlook for modeling particle properties are discussed.


Subject(s)
Data Curation , Drug Industry , Powders , Particle Size , Computer Simulation
8.
J Pharm Sci ; 111(11): 2943-2954, 2022 11.
Article in English | MEDLINE | ID: mdl-35973604

ABSTRACT

Titanium dioxide (in the form of E171) is a ubiquitous excipient in tablets and capsules for oral use. In the coating of a tablet or in the shell of a capsule the material disperses visible and UV light so that the contents are protected from the effects of light, and the patient or caregiver cannot see the contents within. It facilitates elegant methods of identification for oral solid dosage forms, thus aiding in the battle against counterfeit products. Titanium dioxide ensures homogeneity of appearance from batch to batch fostering patient confidence. The ability of commercial titanium dioxide to disperse light is a function of the natural properties of the anatase polymorph of titanium dioxide, and the manufacturing processes used to produce the material utilized in pharmaceuticals. In some jurisdictions E171 is being considered for removal from pharmaceutical products, as a consequence of it being delisted as an approved colorant for foods. At the time of writing, in the view of the authors, no system or material which could address both current and future toxicological concerns of Regulators and the functional needs of the pharmaceutical industry and patients has been identified. This takes into account the assessment of materials such as calcium carbonate, talc, isomalt, starch and calcium phosphates. In this paper an IQ Consortium team outlines the properties of titanium dioxide and criteria to which new replacement materials should be held.


Subject(s)
Excipients , Talc , Calcium Carbonate , Food Additives/chemistry , Humans , Starch , Tablets , Titanium/chemistry
10.
AAPS PharmSciTech ; 21(6): 218, 2020 Aug 02.
Article in English | MEDLINE | ID: mdl-32743765

ABSTRACT

The attrition of drug particles during the process of dry granulation, which may (or may not) be incorporated into granules, could be an important factor in determining the subsequent performance of that granulation, including key factors such as sticking to punches and bio-performance of the dosage form. It has previously been demonstrated that such attrition occurs in one common dry granulation process train; however, the fate of these comminuted particles in granules was not determined. An understanding of the phenomena of attrition and incorporation into granule will improve our ability to understand the performance of granulated systems, ultimately leading to an improvement in our ability to optimize and model the process. Unique feeding mechanisms, geometry, and milling systems of roller compaction equipment mean that attrition could be more or less substantial for any given equipment train. In this work, we examined attrition of API particles and their incorporation into granule in an equipment train from Gerteis, a commonly used equipment train for dry granulation. The results demonstrate that comminuted drug particles can exist free in post-milling blends of roller compaction equipment trains. This information can help better understand the performance of the granulations, and be incorporated into mechanistic models to optimize such processes.


Subject(s)
Drug Compounding/methods , Technology, Pharmaceutical/methods , Particle Size , Powders , Tablets
11.
AAPS PharmSciTech ; 19(8): 3462-3480, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30411240

ABSTRACT

The impact of pharmaceutical materials properties on drug product quality and manufacturability is well recognised by the industry. An ongoing effort across industry and academia, the Manufacturing Classification System consortium, aims to gather the existing body of knowledge in a common framework to provide guidance on selection of appropriate manufacturing technologies for a given drug and/or guide optimization of the physical properties of the drug to facilitate manufacturing requirements for a given processing route. Simultaneously, material scientists endeavour to develop characterisation methods such as size, shape, surface area, density, flow and compactibility that enable a stronger understanding of materials powder properties. These properties are routinely tested drug product development and advances in instrumentation and computing power have enabled novel characterisation methods which generate larger, more complex data sets leading to a better understanding of the materials. These methods have specific requirements in terms of data management and analysis. An appropriate data management strategy eliminates time-consuming data collation steps and enables access to data collected for multiple methods and materials simultaneously. Methods ideally suited to extract information from large, complex data sets such as multivariate projection methods allow simpler representation of the variability contained within the data and easier interpretation of the key information it contains. In this review, an overview of the current knowledge and challenges introduced by modern pharmaceutical material characterisation methods is provided. Two case studies illustrate how the incorporation of multivariate analysis into the material sciences workflow facilitates a better understanding of materials.


Subject(s)
Drug Industry , Technology, Pharmaceutical , Drug Development , Powders
12.
Pharm Dev Technol ; 23(10): 1146-1155, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30303433

ABSTRACT

A key part of the Risk Assessment of excipients is to understand how raw material variability could (or does) contribute to differences in performance of the drug product. Here we demonstrate an approach which achieves the necessary understanding for a complex, functional, excipient. Multivariate analysis (MVA) of the certificates of analysis of an ethylcellulose aqueous dispersion (Surelease) formulation revealed low overall variability of the properties of the systems. Review of the scores plot to highlight batches manufactured using the same ethylcellulose raw material in the formulation, indicated that these batches tend to be more closely related than other randomly selected batches. This variability could result in potential differences in the quality of drug product lots made from these batches. Manufacture of a model drug product from Surelease batches coated using different lots of starting material revealed small differences in the release of a model drug, which could be detected by certain model dependent dissolution modeling techniques, but they were not observed when using model-independent techniques. This illustrates that the techniques are suitable for detecting and understanding excipient variability, but that, in this case, the product was still robust.


Subject(s)
Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Excipients/analysis , Excipients/chemistry , Multivariate Analysis
14.
J Pharm Sci ; 107(9): 2267-2282, 2018 09.
Article in English | MEDLINE | ID: mdl-29751009

ABSTRACT

Sticking and picking during tablet manufacture has received increasing interest recently, as it causes tablet defects, downtime in manufacturing, and yield losses. The capricious nature of the problem means that it can appear at any stage of the development cycle, even when it has been deemed as low risk by models, tests, and previous experience. In many cases, the problem manifests when transferring the process from one manufacturing site to another. Site transfers are more common now than in previous times because of the multinational nature of drug product manufacturing and the need for redundancy in manufacturing networks. Sticking is a multifactorial problem, so one single "fix" is unlikely to solve it completely, and "solutions" addressing one problem may exacerbate another. A broad-based strategy involving the API, formulation, tablet tooling, and the manufacturing process is the most likely approach to provide a robust and lasting solution. When faced with a sticking problem for the first or subsequent time, the formulator should address, in a structured way, a range of possible causes and remedies. In this article, we focus on current research and practice; on some of the common causes of sticking; mitigation and resolution strategies and solutions; and possible future directions in research.


Subject(s)
Tablets/chemical synthesis , Technology, Pharmaceutical/instrumentation , Technology, Pharmaceutical/methods , Compressive Strength , Pressure , Surface Properties , Tablets/standards , Technology, Pharmaceutical/standards
15.
Pharm Dev Technol ; 22(7): 904-909, 2017 Nov.
Article in English | MEDLINE | ID: mdl-27344924

ABSTRACT

The aim of this study was to determine the location of attrition of formulated API particles within a powder feed system using a Morphologi G3-ID system, an image analyzer with integrated Raman capability enabling classification of particles with respect to their chemistry, to extract the API size distribution from the blended sample. The study also aimed to investigate the impact of other process variables, such as feed screw speed, on the extent of attrition observed. The study demonstrated that attrition occurs in two zones of the powder feed system, at the bottom of the hopper at the interface with the feed screw, and also within the feed screw itself. In the situation of the attrition at the bottom of the hopper variations in the hopper fill level were not observed to change the extent of attrition observed. Variation of the feed screw speed was observed to affect the extent of API attrition, with the particle size within the formulation observed to decrease with increasing speed. The findings highlight that an understanding of the impact of unit processes, and variations in the associated processing conditions, is vital in order to fully understand the behavior and performance of pharmaceutical dosage forms.


Subject(s)
Chemistry, Pharmaceutical , Technology, Pharmaceutical , Particle Size , Powders
17.
Int J Pharm ; 510(1): 1-8, 2016 Aug 20.
Article in English | MEDLINE | ID: mdl-27262271

ABSTRACT

The aim of this study was to investigate the capability of X-ray microtomography to obtain information relating to powder characteristics such as wall thickness and solid volume fraction for hollow, polymer-stabilised spray dried dispersion (SDD) particles. SDDs of varying particle properties, with respect to shell wall thickness and degree of particle collapse, were utilised to assess the capability of the approach. The results demonstrate that the approach can provide insight into the morphological characteristics of these hollow particles, and thereby a means to understand/predict the processability and performance characteristics of the bulk material. Quantitative assessments of particle wall thickness, particle/void volume and thereby solid volume fraction were also demonstrated to be achievable. The analysis was also shown to be able to qualitatively assess the impact of the drying rate on the morphological nature of the particle surfaces, thus providing further insight into the final particle shape. The approach demonstrated a practical means to access potentially important particle characteristics for SDD materials which, in addition to the standard bulk powder measurements such as particle size and bulk density, may enable a better understanding of such materials, and their impact on downstream processability and dosage form performance.


Subject(s)
Polymers/chemistry , Technology, Pharmaceutical/methods , X-Ray Microtomography/methods , Particle Size , Powders
18.
Int J Pharm ; 514(2): 335-340, 2016 Dec 05.
Article in English | MEDLINE | ID: mdl-26423176

ABSTRACT

In the oral solid dosage form space, material physical properties have a strong impact on the behaviour of the formulation during processing. The ability to identify materials with similar characteristics (and thus expected to exhibit similar behaviour) within the company's portfolio can help accelerate drug development by enabling early assessment and prediction of potential challenges associated with the powder properties of a new active pharmaceutical ingredient. Such developments will aid the production of robust dosage forms, in an efficient manner. Similarity scoring metrics are widely used in a number of scientific fields. This study proposes a practical implementation of this methodology within pharmaceutical development. The developed similarity metrics is based on the Mahalanobis distance. Scanning electron microscopy was used to confirm morphological similarity between the reference material and the closest matches identified by the metrics proposed. The results show that the metrics proposed are able to successfully identify material with similar physical properties.


Subject(s)
Chemistry, Pharmaceutical/statistics & numerical data , Dosage Forms/standards , Administration, Oral , Chemistry, Pharmaceutical/methods , Microscopy, Electron, Scanning
19.
Int J Pharm ; 493(1-2): 341-6, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26235919

ABSTRACT

The aim of this study was to assess the impact of unit processes on the de-aggregation of a cohesive micronised API within a pharmaceutical formulation using near-infrared chemical imaging. The impact on the primary API particles was also investigated using an image-based particle characterization system with integrated Raman analysis. The blended material was shown to contain large, API rich domains which were distributed in-homogeneously across the sample, suggesting that the blending process was not aggressive enough to disperse aggregates of micronised drug particles. Cone milling, routinely used to improve the homogeneity of such cohesive formulations, was observed to substantially reduce the number and size of API rich domains; however, several smaller API domains survived the milling process. Conveyance of the cone milled formulation through the Alexanderwerk WP120 powder feed system completely dispersed all remaining aggregates. Importantly, powder feed transmission of the un-milled formulation was observed to produce an equally homogeneous API distribution. The size of the micronised primary drug particles remained unchanged during powder feed transmission. These findings provide further evidence that this powder feed system does induce shear, and is in fact better able to disperse aggregates of a cohesive micronised API within a blend than the blend-mill-blend step.


Subject(s)
Technology, Pharmaceutical/methods , Amidines/chemistry , Cellulose/chemistry , Lactose/chemistry , Particle Size , Pyrazoles/chemistry , Silicon Dioxide/chemistry , Spectroscopy, Near-Infrared , Spectrum Analysis, Raman , Stearic Acids/chemistry
20.
J Pharm Sci ; 104(5): 1563-74, 2015 May.
Article in English | MEDLINE | ID: mdl-25690940

ABSTRACT

With the introduction of Quality by Design (QbD) to the pharmaceutical industry, there has been an increased focus on understanding the nature of particles and composites, with the aim of understanding and modeling how they interact in complex systems, leading to robust dosage forms. Particle characterization tools have evolved and now enable a greater level of understanding of powder systems and blends. Tools that can elucidate the size and shape of particulate systems can provide significantly more information about the nature of the particles being analyzed, than a conventional particle size measurement. Although accurate size and shape analysis has always been regarded as the "gold standard" in understanding the nature of particulate systems, neither imaging systems nor IT infrastructure was sufficiently developed to allow this to be performed with sufficient accuracy in a timely manner. The aim of this review is to provide an insight into developments in the field of size and shape analysis of pharmaceutical systems, and how these can now realistically be used as robust development tools. Examples of current uses of such technologies will be explored as well as investigating future applications such as combined image/spectroscopic analyses to track single components within blended systems.


Subject(s)
Drug Discovery/methods , Particle Size , Pharmaceutical Preparations/chemical synthesis , Chemistry, Pharmaceutical/methods , Chemistry, Pharmaceutical/trends , Crystallization , Drug Discovery/trends
SELECTION OF CITATIONS
SEARCH DETAIL
...