Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Ibrain ; 10(2): 123-133, 2024.
Article in English | MEDLINE | ID: mdl-38915951

ABSTRACT

Neurodegenerative diseases represent an increasingly burdensome challenge of the past decade, primarily driven by the global aging of the population. Ongoing efforts focus on implementing diverse strategies to mitigate the adverse effects of neurodegeneration, with the goal of decelerating the pathology progression. Notably, in recent years, it has emerged that the use of nanoparticles (NPs), particularly those obtained through green chemical processes, could constitute a promising therapeutic approach. Green NPs, exclusively sourced from phytochemicals, are deemed safer compared to NPs synthetized through conventional chemical route. In this study, the effects of green chemistry-derived silver NPs (AgNPs) were assessed in neuroblastoma cells, SHSY-5Y, which are considered a pivotal model for investigating neurodegenerative diseases. Specifically, we used two different concentrations (0.5 and 1 µM) of AgNPs and two time points (24 and 48 h) to evaluate the impact on neuroblastoma cells by observing viability reduction and intracellular calcium production, especially using 1 µM at 48 h. Furthermore, investigation using atomic force microscopy (AFM) unveiled an alteration in Young's modulus due to the reorganization of cortical actin following exposure to green AgNPs. This evidence was further corroborated by confocal microscopy acquisitions as well as coherency and density analyses on actin fibers. Our in vitro findings suggest the potential efficacy of green AgNPs against neurodegeneration; therefore, further in vivo studies are imperative to optimize possible therapeutic protocols.

2.
Sci Rep ; 14(1): 11516, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769123

ABSTRACT

This manuscript aims to study the reliability of different variables related to performance and acceleration during the golf putt in players with medium-to-high handicaps and to determine the number of attempts necessary to find reliable values for these variables. Eight males and two females [55.67 (13.64) years, 78.4 (11.4) kg, 1.75 (7.95) m] participated in two experimental sessions separated by one week. In these sessions, they performed three blocks of 10 putts trying to stop the golf ball at the center of a dartboard painted 2 m away. The performance was assessed depending on the area of the dartboard where the ball stopped, and the acceleration signals were acquired using the Xsens Dot. The results showed that to evaluate performance, 18 trials were necessary to reach reliable values using the 0-10 scoring system, and 28 trials were necessary for the 0-3 scoring system. Regarding the reliability of the accelerometer-related variables, 7 attempts were necessary to obtain good-to-excellent reliability values for most of the variables. It could be concluded that putting in medium-to-high handicap golf players can be reliably measured using the abovementioned protocol.


Subject(s)
Athletic Performance , Golf , Humans , Male , Female , Reproducibility of Results , Athletic Performance/physiology , Adult , Middle Aged , Aged , Acceleration
3.
J Biotechnol ; 384: 29-37, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38423471

ABSTRACT

Cell disintegration and protein extraction are crucial steps in downstream process development for biopharmaceuticals produced in E. coli. In this study, we explored the extraction mechanism of polyethyleneimine (PEI) at the cellular level and characterized the floc network that is formed upon PEI addition by Focused Beam Reflectance Measurement and Dispersion Analyzer. PEI disintegrates the cells by detachment of the outer membrane allowing protein to diffuse into the interspace of the flocs. Protein release into the supernatant occurs by diffusion out of the floc network. We could show that the type and concentrations of PEIs with varying molecular weight determines the floc properties and thus the extraction efficiency. We could demonstrate why optimal conditions, using 70 kDa PEI at 0.25 g/g cell dry mass, lead to efficient extraction while at suboptimal conditions extraction is almost negligible. Our findings provide valuable insights into the relationship between floc properties and PEI-driven protein extraction, with potential applications in bioprocessing and biotechnology.


Subject(s)
Escherichia coli , Polyethyleneimine , Escherichia coli/genetics , Molecular Weight , Membrane Proteins
4.
Chemosphere ; 353: 141463, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423146

ABSTRACT

Amidst the global plastic pollution crisis, the gastrointestinal tract serves as the primary entry point for daily exposure to micro- and nanoplastics. We investigated the complex dynamics between polystyrene micro- and nanoplastics (PS-MNPs) and four distinct human colorectal cancer cell lines (HT29, HCT116, SW480, and SW620). Our findings revealed a significant size- and concentration dependent uptake of 0.25, 1, and 10 µm PS-MNPs across all cell lines, with HCT116 cells exhibiting the highest uptake rates. During cell division, particles were distributed between mother and daughter cells. Interestingly, we observed no signs of elimination from the cells. Short-term exposure to 0.25 µm particles significantly amplified cell migration, potentially leading to pro-metastatic effects. Particles demonstrated high persistence in 2D and 3D cultures, and accumulation in non-proliferating parts of spheroids, without interfering with cell proliferation or division. Our study unveils the disturbing fact of the persistence and bioaccumulation of MNPs in colorectal cancer cell lines, key toxicological traits under REACH (Regulation concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals). Our observations underscore the potential of MNPs as hidden catalysts for tumor progression, particularly through enhancing cell migration and possibly fueling metastasis - a finding that sheds light on a significant and previously underexplored area of concern.


Subject(s)
Colorectal Neoplasms , Water Pollutants, Chemical , Humans , Microplastics/metabolism , Plastics/toxicity , Polystyrenes/metabolism , Cell Division , Cell Movement , Water Pollutants, Chemical/metabolism
5.
Int J Mol Sci ; 24(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38003442

ABSTRACT

This study explores the hysteresis phenomenon in DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) monolayers, considering several variables, including temperature, compression and expansion rates, residence time, and subphase content. The investigation focuses on analyzing the influence of these variables on key indicators such as the π-A isotherm curve, loop area, and compression modulus. By employing the Langmuir-Blodgett technique, the findings reveal that all the examined factors significantly affect the aforementioned parameters. Notably, the hysteresis loop, representing dissipated energy, provides valuable insights into the monolayer's viscoelasticity, molecular packing, phase transition changes, and resistance during the isocycle process. These findings contribute to a comprehensive understanding of the structural and dynamic properties of DPPC monolayers, offering insights into their behavior under varying conditions. Moreover, the knowledge gained from this study can aid in the development of precise models and strategies for controlling and manipulating monolayer properties, with potential applications in drug delivery systems, surface coatings, as well as further investigation into air penetration into alveoli and the blinking mechanism.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine , Glycerylphosphorylcholine , Surface Properties , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Temperature
6.
Int J Mol Sci ; 24(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37569585

ABSTRACT

In healthy tissues, cells are in mechanical homeostasis. During cancer progression, this equilibrium is disrupted. Cancer cells alter their mechanical phenotype to a softer and more fluid-like one than that of healthy cells. This is connected to cytoskeletal remodeling, changed adhesion properties, faster cell proliferation and increased cell motility. In this work, we investigated the mechanical properties of breast cancer cells representative of different breast cancer subtypes, using MCF-7, tamoxifen-resistant MCF-7, MCF10A and MDA-MB-231 cells. We derived viscoelastic properties from atomic force microscopy force spectroscopy measurements and showed that the mechanical properties of the cells are associated with cancer cell malignancy. MCF10A are the stiffest and least fluid-like cells, while tamoxifen-resistant MCF-7 cells are the softest ones. MCF-7 and MDA-MB-231 show an intermediate mechanical phenotype. Confocal fluorescence microscopy on cytoskeletal elements shows differences in actin network organization, as well as changes in focal adhesion localization. These findings provide further evidence of distinct changes in the mechanical properties of cancer cells compared to healthy cells and add to the present understanding of the complex alterations involved in tumorigenesis.


Subject(s)
Breast Neoplasms , Cytoskeleton , Humans , Female , Cell Line, Tumor , Cytoskeleton/metabolism , MCF-7 Cells , Actins/metabolism , Tamoxifen/pharmacology , Tamoxifen/metabolism , Breast Neoplasms/metabolism , Microscopy, Atomic Force/methods
7.
Microsc Res Tech ; 86(9): 1069-1078, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37345422

ABSTRACT

Cells generate traction forces to probe the mechanical properties of the surroundings and maintain a basal equilibrium state of stress. Traction forces are also implicated in cell migration, adhesion and ECM remodeling, and alteration of these forces is often observed in pathologies such as cancer. Thus, analyzing the traction forces is important for studies of cell mechanics in cancer and metastasis. In this primer, the methodology for conducting two-dimensional traction force microscopy (2D-TFM) experiments is reported. As a practical example, we analyzed the traction forces generated by three human breast cancer cell lines of different metastatic potential: MCF10-A, MCF-7 and MDA-MB-231 cells, and studied the effects of actin cytoskeleton disruption on those traction forces. Contrary to what is often reported in literature, lower traction forces were observed in cells with higher metastatic potential (MDA-MB-231). Implications of substrate stiffness and concentration of extracellular matrix proteins in such findings are discussed in the text. RESEARCH HIGHLIGHTS: Traction force microscopy (TFM) is suitable for studying and quantifying cell-substrate and cell-cell forces. TFM is suitable for investigating the relationship between chemical to mechanical signal transduction and vice versa. TFM can be combined with classical indentation studies providing a compact picture of cell mechanics. TFM still needs new physico-chemical (sample preparation) and computational approaches for more accurate data evaluation.


Subject(s)
Mechanical Phenomena , Traction , Humans , Microscopy, Atomic Force/methods , Cell Adhesion/physiology , Cell Movement/physiology
8.
Sci Rep ; 13(1): 3087, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36813800

ABSTRACT

Cell mechanical properties have been proposed as label free markers for diagnostic purposes in diseases such as cancer. Cancer cells show altered mechanical phenotypes compared to their healthy counterparts. Atomic Force Microscopy (AFM) is a widely utilized tool to study cell mechanics. These measurements often need skilful users, physical modelling of mechanical properties and expertise in data interpretation. Together with the need to perform many measurements for statistical significance and to probe wide enough areas in tissue structures, the application of machine learning and artificial neural network techniques to automatically classify AFM datasets has received interest recently. We propose the use of self-organizing maps (SOMs) as unsupervised artificial neural network applied to mechanical measurements performed via AFM on epithelial breast cancer cells treated with different substances that affect estrogen receptor signalling. We show changes in mechanical properties due to treatments, as estrogen softened the cells, while resveratrol led to an increase in cell stiffness and viscosity. These data were then used as input for SOMs. Our approach was able to distinguish between estrogen treated, control and resveratrol treated cells in an unsupervised manner. In addition, the maps enabled investigation of the relationship of the input variables.


Subject(s)
Algorithms , Neoplasms , Microscopy, Atomic Force/methods , Resveratrol , Viscosity , Neural Networks, Computer
9.
Toxins (Basel) ; 15(2)2023 02 19.
Article in English | MEDLINE | ID: mdl-36828480

ABSTRACT

Cyt proteins are insecticidal proteins originally from Bacillus thuringiensis. The lipid binding of the Cyt2Aa2 protein depends on the phase of the lipid bilayer. In this work, the importance of the conserved T144 residue in the αD-ß4 loop for lipid binding on fluid lipid membranes was investigated via atomic force microscopy (AFM). Lipid membrane fluidity could be monitored for the following lipid mixture systems: POPC/DPPC, POPC/SM, and DOPC/SM. AFM results revealed that the T144A mutant was unable to bind to pure POPC bilayers. Similar topography between the wildtype and T144A mutant was seen for the POPC/Chol system. Small aggregates of T144A mutant were observed in the POPC and DOPC domains of the lipid mixture systems. In addition, the T144A mutant had no cytotoxic effect against human colon cancer cells. These results suggest that alanine replacement into threonine 144 hinders the binding of Cyt2Aa2 on liquid lipid membranes. These observations provide a possibility to modify the Cyt2Aa2 protein to specific cells via lipid phase selection.


Subject(s)
Bacterial Proteins , Threonine , Humans , Bacterial Proteins/metabolism , Lipid Bilayers/metabolism , Membrane Fluidity , Mutation , Phosphatidylcholines
10.
Int J Mol Sci ; 24(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36768962

ABSTRACT

Stress-associated changes in the mechanical properties at the single-cell level of Escherichia coli (E. coli) cultures in bioreactors are still poorly investigated. In our study, we compared peptide-producing and non-producing BL21(DE3) cells in a fed-batch cultivation with tightly controlled process parameters. The cell growth, peptide content, and cell lysis were analysed, and changes in the mechanical properties were investigated using atomic force microscopy. Recombinant-tagged somatostatin-28 was expressed as soluble up to 197 ± 11 mg g-1. The length of both cultivated strains increased throughout the cultivation by up to 17.6%, with nearly constant diameters. The peptide-producing cells were significantly softer than the non-producers throughout the cultivation, and respective Young's moduli decreased by up to 57% over time. A minimum Young's modulus of 1.6 MPa was observed after 23 h of the fed-batch. Furthermore, an analysis of the viscoelastic properties revealed that peptide-producing BL21(DE3) appeared more fluid-like and softer than the non-producing reference. For the first time, we provide evidence that the physical properties (i.e., the mechanical properties) on the single-cell level are significantly influenced by the metabolic burden imposed by the recombinant peptide expression and C-limitation in bioreactors.


Subject(s)
Bioreactors , Escherichia coli , Recombinant Proteins/metabolism , Cell Cycle
11.
Langmuir ; 38(50): 15552-15558, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36484724

ABSTRACT

Bacterial cells survive in a wide range of different environments and actively tune their mechanical properties for purposes of growth, movement, division, and nutrition. In Gram-negative bacteria, the cell envelope with its outer membrane and peptidoglycan are the main determinants of mechanical properties and are common targets for the use of antibiotics. The study of bacterial mechanical properties has shown promise in elucidating a structure-function relationship in bacteria, connecting, shape, mechanics, and biochemistry. In this work, we study frequency and time-dependent viscoelastic properties of E. coli cells by atomic force microscopy (AFM). We perform force cycles, oscillatory microrheology, stress relaxation, and creep experiments, and use power law rheology models to fit the experimental results. All data sets could be fitted with the models and provided power law exponents of 0.01 to 0.1 while showing moduli in the range of a few MPa. We provide evidence for the interchangeability of the properties derived from these four different measurement approaches.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Elasticity , Microscopy, Atomic Force/methods , Cell Membrane , Viscosity
12.
Microsc Res Tech ; 85(10): 3284-3295, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35736395

ABSTRACT

Cells are complex, viscoelastic bodies. Their mechanical properties are defined by the arrangement of semiflexible cytoskeletal fibers, their crosslinking, and the active remodeling of the cytoskeletal network. Atomic force microscopy (AFM) is an often-used technique for the study of cell mechanics, enabling time- and frequency-dependent measurements with nanometer resolution. Cells exhibit time-dependent deformation when stress is applied. In this work, we have investigated the stress relaxation of HeLa cells when subjected to a constant strain. We have varied the applied force (1, 2, 4, and 8 nN) and pause time (1, 10, and 60 s) to check for common assumptions for the use of models of linear viscoelasticity. Then, we have applied three models (standard linear solid, five element Maxwell, power law rheology) to study their suitability to fit the datasets. We show that the five element Maxwell model captures the stress relaxation response the best while still retaining a low number of free variables. This work serves as an introduction and guide when performing stress relaxation experiments on soft matter using AFM. RESEARCH HIGHLIGHTS: Cells exhibit linear viscoelastic properties when subjected to stress relaxation measurements at the studied different forces and times. The stress relaxation is best described by a five element Maxwell model. All three used models capture a softening and fluidization of cells when disrupting actin filaments.


Subject(s)
Microscopy, Atomic Force , Elasticity , HeLa Cells , Humans , Microscopy, Atomic Force/methods , Rheology , Stress, Mechanical , Viscosity
13.
Microsc Res Tech ; 85(8): 3025-3036, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35502131

ABSTRACT

Biopolymers, such as polynucleotides, polypeptides and polysaccharides, are macromolecules that direct most of the functions in living beings. Studying the mechanical unfolding of biopolymers provides important information about their molecular elasticity and mechanical stability, as well as their energy landscape, which is especially important in proteins, since their three-dimensional structure is essential for their correct activity. In this primer, we present how to study the mechanical properties of proteins with atomic force microscopy and how to obtain information about their stability and energetic landscape. In particular, we discuss the preparation of polyprotein constructs suitable for AFM single molecule force spectroscopy (SMFS), describe the parameters used in our force-extension SMFS experiments and the models and equations employed in the analysis of the data. As a practical example, we show the effect of the temperature on the unfolding force, the distance to the transition state, the unfolding rate at zero force, the height of the transition state barrier, and the spring constant of the protein for a construct containing nine repeats of the I27 domain from the muscle protein titin. HIGHLIGHTS: 1. Atomic force microscopy (AFM) can be used to study the mechanical unfolding of polymers. 2. AFM provides a direct measurement of unfolding (unbinding) forces. 3. Force measurements for different rates provide information about the distance to the transition state and the unfolding rate at zero force.


Subject(s)
Mechanical Phenomena , Muscle Proteins , Biopolymers , Connectin/chemistry , Elasticity , Microscopy, Atomic Force/methods , Muscle Proteins/chemistry
14.
FEBS J ; 289(15): 4580-4601, 2022 08.
Article in English | MEDLINE | ID: mdl-35124883

ABSTRACT

A-to-I RNA editing by ADARs is an abundant epitranscriptomic RNA-modification in metazoa. In mammals, Flna pre-mRNA harbours a single conserved A-to-I RNA editing site that introduces a Q-to-R amino acid change in Ig repeat 22 of the encoded protein. Previously, we showed that FLNA editing regulates smooth muscle contraction in the cardiovascular system and affects cardiac health. The present study investigates how ADAR2-mediated A-to-I RNA editing of Flna affects actin crosslinking, cell mechanics, cellular adhesion and cell migration. Cellular assays and AFM measurements demonstrate that the edited version of FLNA increases cellular stiffness and adhesion but impairs cell migration in both, mouse fibroblasts and human tumour cells. In vitro, edited FLNA leads to increased actin crosslinking, forming actin gels of higher stress resistance. Our study shows that Flna RNA editing is a novel regulator of cytoskeletal organisation, affecting the mechanical property and mechanotransduction of cells.


Subject(s)
Actins , Filamins , RNA Editing , Actins/genetics , Actins/metabolism , Animals , Filamins/genetics , Filamins/metabolism , Humans , Mechanotransduction, Cellular/genetics , Mice , RNA Precursors/metabolism
15.
Methods Mol Biol ; 2471: 323-343, 2022.
Article in English | MEDLINE | ID: mdl-35175607

ABSTRACT

Using physical models to describe the response of cells to external stimuli has grown popular in the last three decades. The mechanical properties of cells are tightly linked to biochemical signaling pathways related to cell structure, proliferation, differentiation, motility, and cell fate. This chapter aims to describe how to perform mechanical experiments on MCF-7 breast cancer cells using the atomic force microscope. We present a stepwise procedure on sample preparation, force spectroscopy measurements and a guide on data evaluation using standard rheological models. We demonstrate how to derive all viscoelastic parameters of the cell by conducting stress relaxation and creep experiments. Additionally, the reader can find a sample dataset and the code required for data evaluation.


Subject(s)
Breast Neoplasms , Cell Differentiation , Elastic Modulus , Female , Humans , MCF-7 Cells , Microscopy, Atomic Force/methods , Rheology
16.
J Mech Behav Biomed Mater ; 125: 104979, 2022 01.
Article in English | MEDLINE | ID: mdl-34826769

ABSTRACT

Cells sense stiffness of surrounding tissues and adapt their activity, proliferation, motility and mechanical properties based on such interactions. Cells probe the stiffness of the substrate by anchoring and pulling to their surroundings, transmitting force to the extracellular matrix and other cells, and respond to the resistance they sense, mainly through changes in their cytoskeleton. Cancer and other diseases alter stiffness of tissues, and the response of cancer cells to this stiffness can also be affected. In the present study we show that MCF-7 breast cancer cells seeded on polyacrylamide gels have the ability to detect the stiffness of the substrate and alter their mechanical properties in response. MCF-7 cells plated on soft substrates display lower stiffness and viscosity when compared to those seeded on stiffer gels or glass. These differences can be associated with differences in the morphology and cytoskeleton organisation, since cells seeded on soft substrates have a round morphology, while cells seeded on stiffer substrates acquire a flat and spread morphology with formation of actin filaments, similar to that observed when seeded on glass. These findings show that MCF-7 cells can detect the stiffness of the surrounding microenvironment and thus, modify their mechanical properties.


Subject(s)
MCF-7 Cells , Humans
17.
Materials (Basel) ; 14(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071397

ABSTRACT

Excessive estrogen exposure is connected with increased risk of breast cancer and has been shown to promote epithelial-mesenchymal-transition. Malignant cancer cells accumulate changes in cell mechanical and biochemical properties, often leading to cell softening. In this work we have employed atomic force microscopy to probe the influence of estrogen on the viscoelastic properties of MCF-7 breast cancer cells cultured either in normal or hormone free-medium. Estrogen led to a significant softening of the cells in all studied cases, while growing cells in hormone free medium led to an increase in the studied elastic and viscoelastic moduli. In addition, fluorescence microscopy shows that E-cadherin distribution is changed in cells when culturing them under estrogenic conditions. Furthermore, cell-cell contacts seemed to be weakened. These results were supported by AFM imaging showing changes in surfaces roughness, cell-cell contacts and cell height as result of estrogen treatment. This study therefore provides further evidence for the role of estrogen signaling in breast cancer.

18.
Sci Rep ; 11(1): 4542, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33633190

ABSTRACT

Beta-2-glycoprotein I (ß2GPI) is a blood protein and the major antigen in the autoimmune disorder antiphospholipid syndrome (APS). ß2GPI exists mainly in closed or open conformations and comprises of 11 disulfides distributed across five domains. The terminal Cys288/Cys326 disulfide bond at domain V has been associated with different cysteine redox states. The role of this disulfide bond in conformational dynamics of this protein has not been investigated so far. Here, we report on the enzymatic driven reduction by thioredoxin-1 (recycled by Tris(2-carboxyethyl)phosphine; TCEP) of ß2GPI. Specific reduction was demonstrated by Western blot and mass spectrometry analyses confirming majority targeting to the fifth domain of ß2GPI. Atomic force microscopy images suggested that reduced ß2GPI shows a slightly higher proportion of open conformation and is more flexible compared to the untreated protein as confirmed by modelling studies. We have determined a strong increase in the binding of pathogenic APS autoantibodies to reduced ß2GPI as demonstrated by ELISA. Our study is relevant for understanding the effect of ß2GPI reduction on the protein structure and its implications for antibody binding in APS patients.


Subject(s)
Autoantibodies/chemistry , Protein Conformation , Protein Folding , Protein Interaction Domains and Motifs , beta 2-Glycoprotein I/chemistry , Autoantibodies/immunology , Cysteine/chemistry , Cysteine/metabolism , Disulfides/chemistry , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Microscopy, Atomic Force , Models, Molecular , Protein Binding/immunology , Structure-Activity Relationship , beta 2-Glycoprotein I/immunology , beta 2-Glycoprotein I/metabolism
19.
Microsc Res Tech ; 84(5): 1078-1088, 2021 May.
Article in English | MEDLINE | ID: mdl-33179834

ABSTRACT

Atomic force microscopy (AFM) is the most often used tool to study the mechanical properties of eukaryotic cells. Due to their complex assembly, cells show viscoelastic properties. When performing experiments, one has to consider the influence of both loading rate and maximum load on the measured mechanical properties. Here, we employed colloidal particles of various sizes (from 2 to 20 µm diameter) to perform force spectroscopy measurements on endothelial cells at loading rates varying from 0.1 to 50 µm/s, and maximum loads ranging from 1 to 25 nN. We were able to determine the non-linear dependence of cell viscoelastic properties on the loading rate which followed a weak power law. In addition, we show that previous loading at high forces leads to a stiffening of cells. Based on these results we discuss a road map for determining cell mechanical properties using AFM. Finally, this work provides an experimental framework for cell mechanical measurements using force-cycle experiments.


Subject(s)
Endothelial Cells , Mechanical Phenomena , Microscopy, Atomic Force
20.
Biology (Basel) ; 9(12)2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33327597

ABSTRACT

Monitoring biomechanics of cells or tissue biopsies employing atomic force microscopy (AFM) offers great potential to identify diagnostic biomarkers for diseases, such as colorectal cancer (CRC). Data on the mechanical properties of CRC cells, however, are still scarce. There is strong evidence that the individual zinc status is related to CRC risk. Thus, this study investigates the impact of differing zinc supply on the mechanical response of the in vitro CRC cell lines HT-29 and HT-29-MTX during their early proliferation (24-96 h) by measuring elastic modulus, relaxation behavior, and adhesion factors using AFM. The differing zinc supply severely altered the proliferation of these cells and markedly affected their mechanical properties. Accordingly, zinc deficiency led to softer cells, quantitatively described by 20-30% lower Young's modulus, which was also reflected by relevant changes in adhesion and rupture event distribution compared to those measured for the respective zinc-adequate cultured cells. These results demonstrate that the nutritional zinc supply severely affects the nanomechanical response of CRC cell lines and highlights the relevance of monitoring the zinc content of cancerous cells or biopsies when studying their biomechanics with AFM in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...