Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Allergy Clin Immunol ; 141(1): 171-179.e1, 2018 01.
Article in English | MEDLINE | ID: mdl-28552763

ABSTRACT

BACKGROUND: Food allergy (FA) is an increasing problem that has no approved treatment. The pro-TH2 cytokines IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) are associated with FA, and mAbs to these cytokines are reported to suppress murine FA development. OBJECTIVE: We sought to determine whether anti-pro-TH2 cytokine mAbs can block both FA maintenance and induction. METHODS: IgE-mediated FA was induced in BALB/c mice by oral gavage with medium-chain triglycerides (MCTs) plus egg white (EW) and was characterized by increased numbers of lamina propria TH2 cells, mast cells, and eosinophils, shock (hypothermia), mast cell degranulation (increased serum mouse mast cell protease 1), increased serum IgG1 anti-EW and IgE levels, and increased IL-4 and IL-13 secretion after MCT/EW challenge. Mice were injected with anti-IL-25, IL-33 receptor, and/or TSLP mAbs before initial oral gavage with MCT/EW to suppress FA development; treatment with the same mAbs was initiated after FA development to suppress established FA. RESULTS: Injection of an mAb to IL-25, IL-33 receptor, or TSLP strongly inhibited FA development. No single mAb to a pro-TH2 cytokine could suppress established FA, and optimal FA suppression required treatment with a cocktail of all 3 anti-pro-TH2 mAbs. Treatment with the 3-mAb cocktail during initial MCT/EW immunization induced EW tolerance. CONCLUSION: All of the pro-TH2 cytokines are required to induce our model of FA, whereas any pro-TH2 cytokine can maintain established FA. Pro-TH2 cytokines prevent oral tolerance. Combined treatment with antagonists to all 3 pro-TH2 cytokines or with an inhibitor of pro-TH2 cytokine production might be able to suppress established human FA.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/pharmacology , Antibodies, Neutralizing/pharmacology , Cytokines/antagonists & inhibitors , Food Hypersensitivity , Interleukin-33/antagonists & inhibitors , Interleukins/antagonists & inhibitors , Th2 Cells/immunology , Animals , Antibodies, Monoclonal, Murine-Derived/immunology , Antibodies, Neutralizing/immunology , Cytokines/immunology , Female , Food Hypersensitivity/immunology , Food Hypersensitivity/pathology , Food Hypersensitivity/prevention & control , Interleukin-33/immunology , Interleukins/immunology , Mice , Mice, Inbred BALB C , Th2 Cells/pathology , Thymic Stromal Lymphopoietin
2.
Nature ; 464(7293): 1362-6, 2010 Apr 29.
Article in English | MEDLINE | ID: mdl-20200520

ABSTRACT

CD4(+) T helper 2 (T(H)2) cells secrete interleukin (IL)4, IL5 and IL13, and are required for immunity to gastrointestinal helminth infections. However, T(H)2 cells also promote chronic inflammation associated with asthma and allergic disorders. The non-haematopoietic-cell-derived cytokines thymic stromal lymphopoietin, IL33 and IL25 (also known as IL17E) have been implicated in inducing T(H)2 cell-dependent inflammation at mucosal sites, but how these cytokines influence innate immune responses remains poorly defined. Here we show that IL25, a member of the IL17 cytokine family, promotes the accumulation of a lineage-negative (Lin(-)) multipotent progenitor (MPP) cell population in the gut-associated lymphoid tissue that promotes T(H)2 cytokine responses. The IL25-elicited cell population, termed MPP(type2) cells, was defined by the expression of Sca-1 (also known as Ly6a) and intermediate expression of c-Kit (c-Kit(int)), and exhibited multipotent capacity, giving rise to cells of monocyte/macrophage and granulocyte lineages both in vitro and in vivo. Progeny of MPP(type2) cells were competent antigen presenting cells, and adoptive transfer of MPP(type2) cells could promote T(H)2 cytokine responses and confer protective immunity to helminth infection in normally susceptible Il25(-/-) mice. The ability of IL25 to induce the emergence of an MPP(type2) cell population identifies a link between the IL17 cytokine family and extramedullary haematopoiesis, and suggests a previously unrecognized innate immune pathway that promotes T(H)2 cytokine responses at mucosal sites.


Subject(s)
Cell Differentiation , Interleukins/immunology , Multipotent Stem Cells/cytology , Multipotent Stem Cells/immunology , Th2 Cells/immunology , Th2 Cells/metabolism , Animals , Antigens, Ly/metabolism , Cell Lineage , Granulocytes/cytology , Granulocytes/immunology , Granulocytes/metabolism , Immunity, Innate/immunology , Immunity, Mucosal/immunology , Interleukins/biosynthesis , Interleukins/metabolism , Lymphoid Tissue/cytology , Lymphoid Tissue/immunology , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred Strains , Nippostrongylus/immunology , Proto-Oncogene Proteins c-kit/metabolism , Strongylida Infections/immunology , Th2 Cells/cytology , Trichuriasis/immunology , Trichuris/immunology
3.
J Immunol ; 181(6): 4299-310, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18768888

ABSTRACT

IL-25 (IL-17E) is a unique IL-17 family ligand that promotes Th2-skewed inflammatory responses. Intranasal administration of IL-25 into naive mice induces pulmonary inflammation similar to that seen in patients with allergic asthma, including increases in bronchoalveolar lavage fluid eosinophils, bronchoalveolar lavage fluid IL-5 and IL-13 concentrations, goblet cell hyperplasia, and increased airway hyperresponsiveness. IL-25 has been reported to bind and signal through IL-17RB (IL-17BR, IL-17Rh1). It has been demonstrated recently that IL-17A signals through a heteromeric receptor composed of IL-17RA and IL-17RC. We sought to determine whether other IL-17 family ligands also utilize heteromeric receptor complexes. The required receptor subunits for IL-25 biological activities were investigated in vitro and in vivo using a combination of knockout (KO) mice and antagonistic Abs. Unlike wild-type mice, cultured splenocytes from either IL-17RB KO or IL-17RA KO mice did not produce IL-5 or IL-13 in response to IL-25 stimulation, and both IL-17RB KO and IL-17RA KO mice did not respond to intranasal administration of IL-25. Furthermore, treatment with antagonistic mAbs to either IL-17RB or IL-17RA completely blocked IL-25-induced pulmonary inflammation and airway hyperresponsiveness in naive BALB/c mice, similar to the effects of an antagonistic Ab to IL-25. Finally, a blocking Ab to human IL-17RA prevented IL-25 activity in a primary human cell-based assay. These data demonstrate for the first time that IL-25-mediated activities require both IL-17RB and IL-17RA and provide another example of an IL-17 family ligand that utilizes a heteromeric receptor complex.


Subject(s)
Interleukin-17/physiology , Interleukins/physiology , Receptors, Interleukin-17/physiology , Receptors, Interleukin/physiology , Animals , Cells, Cultured , Humans , Interleukin-17/metabolism , Interleukins/deficiency , Interleukins/genetics , Interleukins/metabolism , Ligands , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Rats , Rats, Inbred Lew , Receptors, Interleukin/deficiency , Receptors, Interleukin/genetics , Receptors, Interleukin-17/deficiency , Receptors, Interleukin-17/genetics
4.
Eur J Immunol ; 34(12): 3326-36, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15484188

ABSTRACT

Programmed death-1 ligand 2 (PD-L2) is a ligand for programmed death-1 (PD-1), a receptor that plays an inhibitory role in T cell activation. Since previous studies have shown up-regulation of PD-L2 expression by Th2 cytokines, and asthma is driven by a Th2 response, we hypothesized that PD-L2 might be involved in regulation of the immune response in this disease. We have found that lungs from asthmatic mice had sustained up-regulation of PD-1 and PD-L2, with PD-L2 primarily on dendritic cells. Although addition of PD-L2-Fc in vitro led to decreased T cell proliferation and cytokine production, administration of PD-L2-Fc in vivo in a mouse asthma model resulted in elevated serum IgE levels, increased eosinophilic and lymphocytic infiltration into bronchoalveolar lavage fluid, higher number of cells in the draining lymph nodes, and production of IL-5 and IL-13 from these cells. Although PD-1 was expressed on regulatory T cells, PD-L2-Fc did not affect regulatory T cell activity in vitro. This study provides in vivo evidence of an exacerbated inflammatory response following PD-L2-Fc administration and indicates a potential role for this molecule in Th2-mediated diseases such as asthma.


Subject(s)
Antigens, Surface/immunology , Asthma/immunology , Lung/immunology , Peptides/immunology , Th2 Cells/immunology , Animals , Antigens, CD/immunology , Apoptosis Regulatory Proteins , B7-1 Antigen/immunology , B7-2 Antigen , Cytokines/immunology , Cytokines/metabolism , Dendritic Cells/immunology , Female , Immunoglobulin E/blood , Immunoglobulin E/immunology , Lymph Nodes/cytology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Membrane Glycoproteins/immunology , Mice , Programmed Cell Death 1 Ligand 2 Protein , Programmed Cell Death 1 Receptor , Th2 Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...