Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 142(11): 5034-5048, 2020 03 18.
Article in English | MEDLINE | ID: mdl-32048840

ABSTRACT

Penicillin binding proteins (PBPs) catalyzing transpeptidation reactions that stabilize the peptidoglycan component of the bacterial cell wall are the targets of ß-lactams, the most clinically successful antibiotics to date. However, PBP-transpeptidation enzymology has evaded detailed analysis, because of the historical unavailability of kinetically competent assays with physiologically relevant substrates and the previously unappreciated contribution of protein cofactors to PBP activity. By re-engineering peptidoglycan synthesis, we have constructed a continuous spectrophotometric assay for transpeptidation of native or near native peptidoglycan precursors and fragments by Escherichia coli PBP1B, allowing us to (a) identify recognition elements of transpeptidase substrates, (b) reveal a novel mechanism of stereochemical editing within peptidoglycan transpeptidation, (c) assess the impact of peptidoglycan substrates on ß-lactam targeting of transpeptidation, and (d) demonstrate that both substrates have to be bound before transpeptidation occurs. The results allow characterization of high molecular weight PBPs as enzymes and not merely the targets of ß-lactam acylation.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Penicillin-Binding Proteins/chemistry , Peptidoglycan Glycosyltransferase/chemistry , Peptidoglycan/chemistry , Polyisoprenyl Phosphate Monosaccharides/chemistry , Polyisoprenyl Phosphate Oligosaccharides/chemistry , Serine-Type D-Ala-D-Ala Carboxypeptidase/chemistry , Bacterial Outer Membrane Proteins/chemistry , Biocatalysis , Enzyme Assays/methods , Kinetics , Stereoisomerism , Substrate Specificity
2.
Chem Biol Drug Des ; 91(6): 1101-1112, 2018 06.
Article in English | MEDLINE | ID: mdl-29363274

ABSTRACT

In the context of antibacterial drug discovery resurgence, novel therapeutic targets and new compounds with alternative mechanisms of action are of paramount importance. We focused on UDP-N-acetylenolpyruvylglucosamine reductase (i.e. MurB), an underexploited target enzyme that is involved in early steps of bacterial peptidoglycan biosynthesis. On the basis of the recently reported crystal structure of MurB in complex with NADP+ , a pharmacophore model was generated and used in a virtual screening campaign with combined structure-based and ligand-based approaches. To explore chemical space around hit compounds, further similarity search and organic synthesis were employed to obtain several compounds with micromolar IC50 values on MurB. The best inhibitors in the reported series of 5-substituted tetrazol-2-yl acetamides were compounds 13, 26 and 30 with IC50 values of 34, 28 and 25 µm, respectively. None of the reported compounds possessed in vitro antimicrobial activity against Staphylococcus aureus and Escherichia coli.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Bacterial Proteins/antagonists & inhibitors , Carbohydrate Dehydrogenases/antagonists & inhibitors , Tetrazoles/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Binding Sites , Carbohydrate Dehydrogenases/metabolism , Catalytic Domain , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Escherichia coli/drug effects , Escherichia coli/enzymology , Kinetics , Molecular Docking Simulation , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Tetrazoles/metabolism , Tetrazoles/pharmacology
3.
Chem Sci ; 9(47): 8850-8859, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30627403

ABSTRACT

Teixobactin is a new promising antibiotic that targets cell wall biosynthesis by binding to lipid II and has no detectable resistance thanks to its unique but yet not fully understood mechanism of operation. To aid in the structure-based design of teixobactin analogues with improved pharmacological properties, we present a 3D structure of native teixobactin in membrane mimetics and characterise its binding to lipid II through a combination of solution NMR and fast (90 kHz) magic angle spinning solid state NMR. In NMR titrations, we observe a pattern strongly suggesting interactions between the backbone of the C-terminal "cage" and the pyrophosphate moiety in lipid II. We find that the N-terminal part of teixobactin does not only act as a membrane anchor, as previously thought, but is actively involved in binding. Moreover, teixobactin forms a well-structured and specific complex with lipid II, where the N-terminal part of teixobactin assumes a ß conformation that is highly prone to aggregation, which likely contributes to the antibiotic's high bactericidal efficiency. Overall, our study provides several new clues to teixobactin's modes of action.

4.
Nat Commun ; 8: 14414, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28248311

ABSTRACT

Tuberculosis (TB) is responsible for enormous global morbidity and mortality, and current treatment regimens rely on the use of drugs that have been in use for more than 40 years. Owing to widespread resistance to these therapies, new drugs are desperately needed to control the TB disease burden. Herein, we describe the rapid synthesis of analogues of the sansanmycin uridylpeptide natural products that represent promising new TB drug leads. The compounds exhibit potent and selective inhibition of Mycobacterium tuberculosis, the etiological agent of TB, both in vitro and intracellularly. The natural product analogues are nanomolar inhibitors of Mtb phospho-MurNAc-pentapeptide translocase, the enzyme responsible for the synthesis of lipid I in mycobacteria. This work lays the foundation for the development of uridylpeptide natural product analogues as new TB drug candidates that operate through the inhibition of peptidoglycan biosynthesis.


Subject(s)
Antitubercular Agents/pharmacology , Biological Products/pharmacology , Monosaccharides/biosynthesis , Oligopeptides/biosynthesis , Oligopeptides/pharmacology , Uridine/analogs & derivatives , Animals , Antitubercular Agents/agonists , Antitubercular Agents/chemistry , Biological Products/agonists , Biological Products/chemistry , Humans , Mice , Mycobacterium tuberculosis/drug effects , Oligopeptides/blood , Oligopeptides/chemistry , Uridine/blood , Uridine/chemistry , Uridine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...