Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38203905

ABSTRACT

Ti-(50-x)Ni-xFe alloys exhibit a thermally induced B2-R martensitic transformation (MT) when x is between 1.5% and 5.7%, whereas this transformation is suppressed when x is 6 at% and higher. We studied the reason for this suppression by applying compressive stress in the [110]B2 direction to single-crystalline Ti-44Ni-6Fe and Ti-42Ni-8Fe (at%) alloys. Under stress, these alloys exhibit a B2-R MT with a large temperature hysteresis of ≥50 K. The B2-R MT in these alloys is probably thermally arrested, and a small entropy change is a possible reason for this arrest. The Young's modulus E[110] of these alloys significantly decreases with decreasing temperature, and the B2-R MT under stress occurs at a temperature where E[110] is approximately 50 GPa. Presumably, lattice softening assists the B2-R MT.

2.
Materials (Basel) ; 15(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35329769

ABSTRACT

To further explore the potential of Zr-based alloys as a biomaterial that will not interfere with magnetic resonance imaging (MRI), the microstructural characteristics of Zr-xat.% Nb alloys (10 ≤ x ≤ 18), particularly the athermal ω phase and lattice modulation, were investigated by conducting electrical resistivity and magnetic susceptibility measurements and transmission electron microscopy observations. The 10 Nb alloy and 12 Nb alloys had a positive temperature coefficient of electrical resistivity. The athermal ω phase existed in 10 Nb and 12 Nb alloys at room temperature. Alternatively, the 14 Nb and 18 Nb alloys had an anomalous negative temperature coefficient of the resistivity. The selected area diffraction pattern of the 14 Nb alloy revealed the co-occurrence of ω phase diffraction and diffuse satellites. These diffuse satellites were represented by gß + q when the zone axis was [001] or [113], but not [110]. These results imply that these diffuse satellites appeared because the transverse waves consistent with the propagation and displacement vectors were q = <ζ ζ¯ 0>* for the ζ~1/2 and <110> directions. It is possible that the resistivity anomaly was caused by the formation of the athermal ω phase and transverse wave. Moreover, control of the athermal ω-phase transformation and occurrence of lattice modulation led to reduced magnetic susceptibility, superior deformation properties, and a low Young's modulus in the Zr-Nb alloys. Thus, Zr-Nb alloys are promising MRI-compatible metallic biomaterials.

3.
Sci Rep ; 7(1): 8056, 2017 Aug 14.
Article in English | MEDLINE | ID: mdl-28808242

ABSTRACT

Softening of metallic materials containing precipitates during cyclic deformation occurs through dissolution of the precipitates, because the to-and-fro motion of the dislocation causes dissolution of the precipitate particles by cutting them. Here, however, we found the completely opposite phenomenon for the first time; a "dynamic precipitation softening" phenomenon. In a Ti-35Nb-10Ta-5Zr body-centered cubic structured ß-Ti alloy single crystal developed for biomedical implant, the to-and-fro motion of the dislocation "induced" the selective precipitation of the ω-phase whose c-axis is parallel to the Burgers vector of the moving dislocation, which led to the significant cyclic softening of the crystal. The formation of the ω-phase is generally believed to induce significant hardening of ß-Ti alloys. However, the present results suggest that this is not always true, and control of the anisotropic features of the ω-phase via control of crystal orientation can induce unusual mechanical properties in ß-Ti alloys. The unique anisotropic mechanical properties obtained by the cyclic-deformation-induced oriented ω-phase formation could be useful for the development of "single-crystalline ß-Ti implant materials" with advanced mechanical performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...