Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Omega ; 7(30): 26021-26028, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35936403

ABSTRACT

We present the device properties of a nickel (Ni)-gallium oxide (Ga2O3) Schottky junction with an interfacial hexagonal boron nitride (hBN) layer. A vertical Schottky junction with the configuration Ni/hBN/Ga2O3/In was created using a chemical vapor-deposited hBN film on a Ga2O3 substrate. The current-voltage characteristics of the Schottky junction were investigated with and without the hBN interfacial layer. We observed that the turn-on voltage for the forward current of the Schottky junction was significantly enhanced with the hBN interfacial film. Furthermore, the Schottky junction was analyzed under the illumination of deep ultraviolet light (254 nm), obtaining a photoresponsivity of 95.11 mA/W under an applied bias voltage (-7.2 V). The hBN interfacial layer for the Ga2O3-based Schottky junction can serve as a barrier layer to control the turn-on voltage and optimize the device properties for deep-UV photosensor applications. Furthermore, the demonstrated vertical heterojunction with an hBN layer has the potential to be significant for temperature management at the junction interface to develop reliable Ga2O3-based Schottky junction devices.

2.
RSC Adv ; 12(33): 21318-21331, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35975049

ABSTRACT

With the increasing importance of power storage devices, demand for the development of supercapacitors possessing both rapid reversible chargeability and high energy density is accelerating. Here we propose a simple process for the room temperature fabrication of pseudocapacitor electrodes consisting of a faradaic redox reaction layer on a metallic electrode with an enhanced surface area. As a model metallic electrode, an Au foil was irradiated with Ar+ ions with a simultaneous supply of C and Ni at room temperature, resulting in fine metallic Ni nanoparticles dispersed in the carbon matrix with local graphitization on the ion-induced roughened Au surface. A carbon layer including fine Ni nanoparticles acted as an excellent faradaic redox reaction layer and the roughened surface contributed to an increase in surface area. The fabricated electrode, which included only 14 µg cm-2 of Ni, showed a stored charge ability three times as large as that of the bulky Ni foil. Thus, it is believed that a carbon layer including Ni nanoparticles fabricated on the charge collective electrode with an ion-irradiation method is promising for the development of supercapacitors from the viewpoints of the reduced use of rare metal and excellent supercapacitor performance.

SELECTION OF CITATIONS
SEARCH DETAIL