Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Comp Immunol ; 142: 104644, 2023 05.
Article in English | MEDLINE | ID: mdl-36708792

ABSTRACT

Many amphibian populations are declining worldwide, and infectious diseases are a leading cause. Given the eminent threat infectious diseases pose to amphibian populations, there is a need to understand the host-pathogen-environment interactions that govern amphibian susceptibility to disease and mortality events. However, using animals in research raises an ethical dilemma, which is magnified by the alarming rates at which many amphibian populations are declining. Thus, in vitro study systems such as cell lines represent valuable tools for furthering our understanding of amphibian immune systems. In this review, we curate a list of the amphibian cell lines established to date (the amphibian invitrome), highlight how research using amphibian cell lines has advanced our understanding of the amphibian immune system, anti-ranaviral defence mechanisms, and Batrachochytrium dendrobatidis replication in host cells, and offer our perspective on how future use of amphibian cell lines can advance the field of amphibian immunology.


Subject(s)
Chytridiomycota , Animals , Amphibians , Host-Pathogen Interactions
2.
MethodsX ; 9: 101693, 2022.
Article in English | MEDLINE | ID: mdl-35492210

ABSTRACT

Skin is an important interface with the external environment and investigating amphibian skin cell biology will improve our understanding of how environmental factors such as pathogens and pollutants are contributing to global amphibian declines. There is a critical need for in vitro systems to facilitate conservation research in model and non-model amphibians and the creation of new amphibian cell lines will play a significant role in reducing or even replacing the use of live animals for in vivo studies by providing an in vitro alternative. Here, we detail an adapted protocol for the generation of spontaneously arising cell lines from frog skin tissues, without the need for immortalization steps. Expanding the amphibian invitrome will foster and expedite new research in amphibian gene function, cellular responses, host-pathogen interactions, and toxicology. The following customizations to traditional tissue explant generation procedures have facilitated the successful generation of adherent skin epithelial-like cell lines from Xenopus laevis and can be further adapted for use with different frog species, such as Rana sylvatica, and different tissues:•Osmotic adjustment of culture medium and solutions for different amphibian species.•Use of small tissue explants, instead of enzymatic digestion of tissues, and gentle spotting of these tissue explants onto the growth surface of tissue culture flasks to promote better tissue adherence.•Partial replacement of medium to allow accumulation of potential endogenous growth factors in cultures.

3.
Cancers (Basel) ; 14(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35158804

ABSTRACT

Hormones and growth factors (GFs) are signaling molecules implicated in the regulation of a variety of cellular processes. They play important roles in both healthy and tumor cells, where they function by binding to specific receptors on target cells and activating downstream signaling cascades. The stages of tumor progression are influenced by hormones and GF signaling. Hypoxia, a hallmark of cancer progression, contributes to tumor plasticity and heterogeneity. Most solid tumors contain a hypoxic core due to rapid cellular proliferation that outgrows the blood supply. In these circumstances, hypoxia-inducible factors (HIFs) play a central role in the adaptation of tumor cells to their new environment, dramatically reshaping their transcriptional profile. HIF signaling is modulated by a variety of factors including hormones and GFs, which activate signaling pathways that enhance tumor growth and metastatic potential and impair responses to therapy. In this review, we summarize the role of hormones and GFs during cancer onset and progression with a particular focus on hypoxia and the interplay with HIF proteins. We also discuss how hypoxia influences the efficacy of cancer immunotherapy, considering that a hypoxic environment may act as a determinant of the immune-excluded phenotype and a major hindrance to the success of adoptive cell therapies.

4.
Dev Comp Immunol ; 124: 104200, 2021 11.
Article in English | MEDLINE | ID: mdl-34237380

ABSTRACT

Frog virus 3 (FV3) causes mortality in a range of amphibian species. Despite the importance of the skin epithelium as a first line of defence against FV3, the interaction between amphibian skin epithelial cells and FV3 remains largely uncharacterized. Here, we used newly established Xenopus laevis skin epithelial-like cell lines, Xela DS2 and Xela VS2, to study the susceptibility and permissiveness of frog skin epithelial cells to FV3, and the innate immune antiviral and proinflammatory gene regulatory responses of these cells to FV3. Both cell lines are susceptible and permissive to FV3, yet do not exhibit appreciable transcript levels of scavenger receptors thought to be used by FV3 for cellular entry. Xela DS2 and Xela VS2 upregulate antiviral and proinflammatory cytokine transcripts in response to poly(I:C) but not to FV3 or UV-inactivated FV3. Poly(I:C) pretreatment limits FV3 replication and FV3-induced cytopathic effects in both cell lines. Thus, Xela DS2 and Xela VS2 can support FV3 replication, represent in vitro systems to investigate antiviral responses of frog skin epithelial cells, and can serve as novel tools for screening compounds that initiate effective antiviral programs to limit FV3 replication.


Subject(s)
Antiviral Restriction Factors/immunology , Epithelial Cells/virology , Ranavirus/physiology , Skin/cytology , Virus Replication/immunology , Animals , Cell Line , Cytokines/immunology , Cytopathogenic Effect, Viral/drug effects , Cytopathogenic Effect, Viral/immunology , Epithelial Cells/drug effects , Epithelial Cells/immunology , Immunity, Innate , Poly I-C/pharmacology , Virus Replication/drug effects , Xenopus laevis
5.
Sci Rep ; 10(1): 16034, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32994470

ABSTRACT

Retrotransposons can represent half of eukaryotic genomes. Retrotransposon dysregulation destabilizes genomes and has been linked to various human diseases. Emerging regulators of retromobility include RNA-DNA hybrid-containing structures known as R-loops. Accumulation of these structures at the transposons of yeast 1 (Ty1) elements has been shown to increase Ty1 retromobility through an unknown mechanism. Here, via a targeted genetic screen, we identified the rnh1Δ rad27Δ yeast mutant, which lacked both the Ty1 inhibitor Rad27 and the RNA-DNA hybrid suppressor Rnh1. The mutant exhibited elevated levels of Ty1 cDNA-associated RNA-DNA hybrids that promoted Ty1 mobility. Moreover, in this rnh1Δ rad27Δ mutant, but not in the double RNase H mutant rnh1Δ rnh201Δ, RNA-DNA hybrids preferentially existed as duplex nucleic acid structures and increased Ty1 mobility in a Rad52-dependent manner. The data indicate that in cells lacking RNA-DNA hybrid and Ty1 repressors, elevated levels of RNA-cDNA hybrids, which are associated with duplex nucleic acid structures, boost Ty1 mobility via a Rad52-dependent mechanism. In contrast, in cells lacking RNA-DNA hybrid repressors alone, elevated levels of RNA-cDNA hybrids, which are associated with triplex nucleic acid structures, boost Ty1 mobility via a Rad52-independent process. We propose that duplex and triplex RNA-DNA hybrids promote transposon mobility via Rad52-dependent or -independent mechanisms.


Subject(s)
R-Loop Structures/genetics , Retroelements/genetics , Retroelements/physiology , DNA, Complementary/genetics , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , RNA/genetics , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Recombination, Genetic/genetics , Ribonuclease H/metabolism , Ribonuclease H/physiology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...