Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 143(37): 15185-15194, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34491732

ABSTRACT

In sharp contrast to molecular synthesis, materials synthesis is generally presumed to lack selectivity. The few known methods of designing selectivity in solid-state reactions have limited scope, such as topotactic reactions or strain stabilization. This contribution describes a general approach for searching large chemical spaces to identify selective reactions. This novel approach explains the ability of a nominally "innocent" Na2CO3 precursor to enable the metathesis synthesis of single-phase Y2Mn2O7: an outcome that was previously only accomplished at extreme pressures and which cannot be achieved with closely related precursors of Li2CO3 and K2CO3 under identical conditions. By calculating the required change in chemical potential across all possible reactant-product interfaces in an expanded chemical space including Y, Mn, O, alkali metals, and halogens, using thermodynamic parameters obtained from density functional theory calculations, we identify reactions that minimize the thermodynamic competition from intermediates. In this manner, only the Na-based intermediates minimize the distance in the hyperdimensional chemical potential space to Y2Mn2O7, thus providing selective access to a phase which was previously thought to be metastable. Experimental evidence validating this mechanism for pathway-dependent selectivity is provided by intermediates identified from in situ synchrotron-based crystallographic analysis. This approach of calculating chemical potential distances in hyperdimensional compositional spaces provides a general method for designing selective solid-state syntheses that will be useful for gaining access to metastable phases and for identifying reaction pathways that can reduce the synthesis temperature, and cost, of technological materials.

2.
Rev Sci Instrum ; 92(5): 054103, 2021 May 01.
Article in English | MEDLINE | ID: mdl-34243244

ABSTRACT

Magnetic particle characterization determines the quality of magnetic particles and is of great importance in particle technology, drug delivery, cell separation, in vivo diagnostics, and other biomedical applications. The quality of the sample depends on the particle size, intrinsic magnetic properties of the particles, and the uniformity of these properties. A commercial particle tracking velocimeter was used to record and capture dark field images of particle trajectories in an applied isodynamic magnetic field. The calibrated particle size, magnetophoretic mobility, and additional image data were collected for each magnetic bead imaged. Using twenty-one different de-identified calibration beads and transmission electron microscopy to validate the vendor-reported particle size enabled the estimation of intrinsic magnetic properties, namely, apparent magnetic susceptibility and saturation magnetization, of individual paramagnetic particles. The distributions of volume magnetic susceptibility based on the magnetophoretic mobility and size of the particle for different magnetic beads were determined and displayed as two-parameter distributions. The measured apparent susceptibility and saturation magnetization were found to be directly proportional to the percentage of iron oxide in the reagent particles.

3.
ACS Mater Lett ; 3(12): 1677-1683, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-38532807

ABSTRACT

Ternary nitride materials hold promise for many optical, electronic, and refractory applications; yet, their preparation via solid-state synthesis remains challenging. Often, high pressures or reactive gases are used to manipulate the effective chemical potential of nitrogen, yet these strategies require specialized equipment. Here, we report on a simple two-step synthesis using ion-exchange reactions that yield rocksalt-derived MgZrN2 and Mg2NbN3, as well as layered MgMoN2. All three compounds show almost temperature-independent and weak paramagnetic responses to an applied magnetic field at cryogenic temperatures, indicating phase-pure products. The key to synthesizing these ternary materials is an initial low-temperature step (300-450 °C) to promote Mg-M-N nucleation. The intermediates then are annealed (800-900 °C) to grow crystalline domains of the ternary product. Calorimetry experiments reveal that initial reaction temperatures are determined by phase transitions of reaction precursors, whereas heating directly to high temperatures results in decomposition. These two-step reactions provide a rational guide to material discovery of other bulk ternary nitrides.

4.
Inorg Chem ; 59(18): 13639-13650, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32866379

ABSTRACT

In the synthesis of complex oxides, solid-state metathesis provides low-temperature reactions where product selectivity can be achieved through simple changes in precursor composition. The influence of precursor structure, however, is less understood in solid-state synthesis. Here we present the ternary metathesis reaction (LiMnO2 + YOCl → YMnO3 + LiCl) to target two yttrium manganese oxide products, hexagonal and orthorhombic YMnO3, when starting from three different LiMnO2 precursors. Using temperature-dependent synchrotron X-ray and neutron diffraction, we identify the relevant intermediates and temperature regimes of reactions along the pathway to YMnO3. Manganese-containing intermediates undergo a charge disproportionation into a reduced Mn(II,III) tetragonal spinel and oxidized Mn(III,IV) cubic spinel, which lead to hexagonal and orthorhombic YMnO3, respectively. Density functional theory calculations confirm that the presence of Mn(IV) caused by a small concentration of cation vacancies (∼2.2%) in YMnO3 stabilizes the orthorhombic polymorph over the hexagonal. Reactions over the course of 2 weeks yield o-YMnO3 as the majority product at temperatures below 600 °C, which supports an equilibration of cation defects over time. Controlling the composition and structure of these defect-accommodating intermediates provides new strategies for selective synthesis of complex oxides at low temperatures.

5.
J Appl Crystallogr ; 53(Pt 3): 662-670, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32684881

ABSTRACT

Temperature is a ubiquitous environmental variable used to explore materials structure, properties and reactivity. This article reports a new paradigm for variable-temperature measurements that varies the temperature continuously across a sample such that temperature is measured as a function of sample position and not time. The gradient approach offers advantages over conventional variable-temperature studies, in which temperature is scanned during a series measurement, in that it improves the efficiency with which a series of temperatures can be probed and it allows the sample evolution at multiple temperatures to be measured in parallel to resolve kinetic and thermodynamic effects. Applied to treat samples at a continuum of tem-peratures prior to measurements at ambient temperature, the gradient approach enables parametric studies of recovered systems, eliminating temperature-dependent structural and chemical variations to simplify interpretation of the data. The implementation of spatially resolved variable-temperature measurements presented here is based on a gradient-heater design that uses a 3D-printed ceramic template to guide the variable pitch of the wire in a resistively heated wire-wound heater element. The configuration of the gradient heater was refined on the basis of thermal modelling. Applications of the gradient heater to quantify thermal-expansion behaviour, to map metastable polymorphs recovered to ambient temperature, and to monitor the time- and temperature-dependent phase evolution in a complex solid-state reaction are demonstrated.

6.
Chem Commun (Camb) ; 56(64): 9186-9189, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32661540

ABSTRACT

Functional small molecules afford opportunities to direct solid-state inorganic reactions at low temperatures. Here, we use catalytic amounts of organosilicon molecules to influence the metathesis reaction: FeCl2 + Na2S2 → 2NaCl + FeS2. Specifically, hexaphenyldisiloxane ((C6H5)6Si2O) is shown to increase pyrite yields in metathesis reactions performed at 150 °C. In situ synchrotron X-ray diffraction (SXRD) paired with differential scanning calorimetry (DSC) reveals that diffusion-limited intermediates are circumvented in the presence of (C6H5)6Si2O. Control reactions suggest that the observed change in the reaction pathway is imparted by the Si-O functional group. 1H NMR supports catalytic behavior, as (C6H5)6Si2O is unchanged ex post facto. Taken together, we hypothesize that the polar Si-O functional group coordinates to iron chloride species when NaCl and Na2S4 form, forming an unidentified, transient intermediate. Further exploration of targeted small molecules in these metathesis reaction provides new strategies in controlling inorganic materials synthesis at low-temperatures.

7.
Inorg Chem ; 58(22): 15166-15174, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31682435

ABSTRACT

In solid-state chemistry, stable phases are often missed if their synthesis is impractical, such as when decomposition or a polymorphic transition occurs at relatively low temperature. In the preparation of complex oxides, reaction temperatures commonly exceed 1000 °C with little to no control of the reaction pathway. Thus, a prerequisite for exploring the synthesis of complex oxides is to identify reactions with intermediates that are kinetically competent at low temperatures, as provided by assisted metathesis reactions. Here, we study the assisted metathesis reaction Mn2O3 + 2.2YCl3·6H2O + 3Li2CO3 → 2YMnO3 + 5.8LiCl + 0.2LiYCl4 + 3CO2 using in situ synchrotron X-ray diffraction. By changing the atmosphere, oxygen vs inert gas, the reaction product changes from the overoxidized perovskite YMnO3+δ to the hexagonal YMnO3 polymorph at the reaction temperature of 850 °C, respectively. Analysis of the reaction pathways reveals two parallel reaction pathways in forming YMnO3 phases: (1) the slow reaction of metal oxides in a LiCl flux (Y2O3 + Mn2O3 [Formula: see text] 2YMnO3) and (2) the fast reaction from ternary intermediates (YOCl + LiMnO2 → LiCl + YMnO3). Control reactions reveal that both proposed pathways in isolation result in product formation, but the direct preparation of ternary intermediates (YOCl + LiMnO2 → LiCl + YMnO3) occurs at lower temperatures (500 °C) and shorter times (<24 h) and forms nominally stoichiometric orthorhombic YMnO3. These ternary intermediates react at a faster rate than the slow stepwise oxygenation of yttrium chloride to Y2O3 (YCl3 → YOCl → Y3O4Cl → Y2O3), which is relatively inert. These results support a kinetically controlled reaction pathway to form YMnO3 phases in assisted metathesis reactions with phase selectivity achievable through changes to reaction atmosphere.

9.
J Am Chem Soc ; 141(3): 1191-1195, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30624059

ABSTRACT

The synthesis of complex oxides requires high temperatures to overcome barriers imparted by solid-state diffusion; as such, reactions typically yield the most stable polymorph for a given composition. To synthesize new or metastable complex oxides, kinetically competent reactions with lower initial energy barriers must be devised to control the reaction pathway and resulting products. This contribution details the selective synthesis of different yttrium manganese oxides through assisted metathesis reactions between Mn2O3, YCl3, and A2CO3 under flowing oxygen; where A = Li, Na, K. With lithium carbonate, the orthorhombic perovskite o-YMnO3 (o-YMnO3+δ) forms over the temperature range of 550-850 °C. With sodium carbonate, the pyrochlore Y2Mn2O7 forms at 650 °C. No apparent selectivity is observed with K2CO3, and all alkalis yields hexagonal YMnO3 at T > 950 °C. The alkali species modify the reaction pathway and thus impart kinetic control in the formation of both phases.

10.
J Diabetes Res ; 2016: 6162970, 2016.
Article in English | MEDLINE | ID: mdl-27843954

ABSTRACT

Islet transplantation (ITx) is an emerging and promising therapy for patients with uncontrolled type 1 diabetes. The islet isolation and purification processes require exposure to extended cold ischemia, warm-enzymatic digestion, mechanical agitation, and use of damaging chemicals for density gradient separation (DG), all of which reduce viable islet yield. In this paper, we describe initial proof-of-concept studies exploring quadrupole magnetic separation (QMS) of islets as an alternative to DG to reduce exposure to these harsh conditions. Three porcine pancreata were split into two parts, the splenic lobe (SPL) and the combined connecting/duodenal lobes (CDL), for paired digestions and purifications. Islets in the SPL were preferentially labeled using magnetic microparticles (MMPs) that lodge within the islet microvasculature when infused into the pancreas and were continuously separated from the exocrine tissue by QMS during the collection phase of the digestion process. Unlabeled islets from the CDL were purified by conventional DG. Islets purified by QMS exhibited significantly improved viability (measured by oxygen consumption rate per DNA, p < 0.03) and better morphology relative to control islets. Islet purification by QMS can reduce the detrimental effects of prolonged exposure to toxic enzymes and density gradient solutions and substantially improve islet viability after isolation.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans , Magnets , Animals , Centrifugation, Density Gradient , Swine
11.
Sci Rep ; 6: 30023, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27435667

ABSTRACT

Neuronal calcium sensor-1 (NCS-1) mediates changes in cellular function by regulating various target proteins. Many potential targets have been identified but the physiological significance of only a few has been established. Upon temperature elevation, Caenorhabditis elegans exhibits reversible paralysis. In the absence of NCS-1, worms show delayed onset and a shorter duration of paralysis. This phenotype can be rescued by re-expression of ncs-1 in AIY neurons. Mutants with defects in four potential NCS-1 targets (arf-1.1, pifk-1, trp-1 and trp-2) showed qualitatively similar phenotypes to ncs-1 null worms, although the effect of pifk-1 mutation on time to paralysis was considerably delayed. Inhibition of pifk-1 also resulted in a locomotion phenotype. Analysis of double mutants showed no additive effects between mutations in ncs-1 and trp-1 or trp-2. In contrast, double mutants of arf-1.1 and ncs-1 had an intermediate phenotype, consistent with NCS-1 and ARF-1.1 acting in the same pathway. Over-expression of arf-1.1 in the AIY neurons was sufficient to rescue partially the phenotype of both the arf-1.1 and the ncs-1 null worms. These findings suggest that ARF-1.1 interacts with NCS-1 in AIY neurons and potentially pifk-1 in the Ca(2+) signaling pathway that leads to inhibited locomotion at an elevated temperature.


Subject(s)
ADP-Ribosylation Factor 1/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/physiology , Caenorhabditis elegans/radiation effects , Neuronal Calcium-Sensor Proteins/metabolism , Neuropeptides/metabolism , Animals , Locomotion/radiation effects , Temperature
12.
Cytometry A ; 89(6): 585-93, 2016 06.
Article in English | MEDLINE | ID: mdl-27123879

ABSTRACT

Quantitative characterization of magnetic particles is useful for analysis and separation of labeled cells and magnetic particles. A particle velocimeter is used to directly measure the magnetophoretic mobility, size, and other parameters of magnetic particle suspensions. The instrument provides quantitative video analysis of particles and their motion. The trajectories of magnetic particles in an isodynamic magnetic field are recorded using a high-definition camera/microscope system for image collection. Image analysis software then converts the image data to the parameters of interest. The distribution of magnetophoretic mobility is determined by combining fast image analysis with velocimetry measurements. Particle size distributions have been characterized to provide a better understanding of sample quality. The results have been used in the development and operation of analyzer protocols for counting particle concentrations accurately and measuring magnetic susceptibility and size for simultaneous display for routine application to particle suspensions and magnetically labeled biological cells. © 2016 International Society for Advancement of Cytometry.


Subject(s)
Image Processing, Computer-Assisted , Immunomagnetic Separation/methods , Magnets/analysis , Molecular Imaging/methods , Immunomagnetic Separation/instrumentation , Magnets/chemistry , Molecular Imaging/instrumentation , Particle Size , Rheology/instrumentation , Rheology/methods , Software , Video Recording
13.
Biochemistry ; 53(38): 6052-62, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25188201

ABSTRACT

In neurons, entry of extracellular calcium (Ca(2+)) into synaptic terminals through Cav2.1 (P/Q-type) Ca(2+) channels is the driving force for exocytosis of neurotransmitter-containing synaptic vesicles. This class of Ca(2+) channel is, therefore, pivotal during normal neurotransmission in higher organisms. In response to channel opening and Ca(2+) influx, specific Ca(2+)-binding proteins associate with cytoplasmic regulatory domains of the P/Q channel to modulate subsequent channel opening. Channel modulation in this way influences synaptic plasticity with consequences for higher-level processes such as learning and memory acquisition. The ubiquitous Ca(2+)-sensing protein calmodulin (CaM) regulates the activity of all types of mammalian voltage-gated Ca(2+) channels, including the P/Q class, by direct binding to specific regulatory motifs. More recently, experimental evidence has highlighted a role for additional Ca(2+)-binding proteins, particularly of the CaBP and NCS families in the regulation of P/Q channels. NCS-1 is a protein found from yeast to humans and that regulates a diverse number of cellular functions. Physiological and genetic evidence indicates that NCS-1 regulates P/Q channel activity, including calcium-dependent facilitation, although a direct physical association between the proteins has yet to be demonstrated. In this study, we aimed to determine if there is a direct interaction between NCS-1 and the C-terminal cytoplasmic tail of the Cav2.1 α-subunit. Using distinct but complementary approaches, including in vitro binding of bacterially expressed recombinant proteins, fluorescence spectrophotometry, isothermal titration calorimetry, nuclear magnetic resonance, and expression of fluorescently tagged proteins in mammalian cells, we show direct binding and demonstrate that CaM can compete for it. We speculate about how NCS-1/Cav2.1 association might add to the complexity of calcium channel regulation mediated by other known calcium-sensing proteins and how this might help to fine-tune neurotransmission in the mammalian central nervous system.


Subject(s)
Calcium Channels, N-Type/metabolism , Neuronal Calcium-Sensor Proteins/metabolism , Neuropeptides/metabolism , Calcium/metabolism , Calcium Channels, N-Type/chemistry , Cloning, Molecular , Humans , Neuronal Calcium-Sensor Proteins/chemistry , Neuropeptides/chemistry , Protein Binding
14.
Can J Chem Eng ; 89(5): 1068-1075, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21984840

ABSTRACT

In the Quadrupole Magnetic Sorter (QMS) magnetic particles enter a vertical flow annulus and are separated from non-magnetic particles by radial deflection into an outer annulus where the purified magnetic particles are collected via a flow splitter. The purity of magnetically isolated particles in QMS is affected by the migration of nonmagnetic particles across transport lamina in the annular flow channel. Computational Fluid Dynamics (CFD) simulations were used to predict the flow patterns, pressure drop and nonspecific crossover in QMS flow channel for the isolation of pancreatic islets of Langerhans. Simulation results were compared with the experimental results to validate the CFD model. Results of the simulations were used to show that one design gives up to 10% less nonspecific crossover than another and this model can be used to optimise the flow channel design to achieve maximum purity of magnetic particles.

15.
Xenotransplantation ; 18(4): 239-44, 2011.
Article in English | MEDLINE | ID: mdl-21848541

ABSTRACT

BACKGROUND: Paramagnetic microparticles (MPs) may be useful in pancreatic islet purification, in particular purification of porcine islets as a potential xenotransplantation product. We assessed whether MPs affect islet function or induce an adverse effect following implantation. METHODS: Porcine islets were co-cultured with 0, 500, and 1500 MPs per islet equivalent (IE) for 1 day and with 0 and 1500 MPs/IE for 7 days. Fractional viability was assessed using oxygen consumption rate normalized to DNA content (OCR/DNA) and after 7-day co-culture by perifusion glucose-stimulated insulin secretion (GSIS) and by transplantation under the renal capsule of diabetic nude mice. To assess an inflammatory response or immune reaction, MPs (∼10(7)) were implanted under the renal capsule of C57BL/6 mice. RESULTS: No statistically significant differences were measured in OCR/DNA (mean ± SE) following 1-day co-culture with 0, 500, or 1500 MPs/IE (243.3 ± 4.5, 211.3 ± 8.1, or 230.6 ± 11.3 nmol/min·mgDNA, respectively) or following 7-day co-culture with 0 or 1500 MPs/IE (248.5 ± 1.4 or 252.9 ± 4.7 nmol/min·mgDNA, respectively). GSIS was not affected by the presence of MPs; first- and second-phase insulin area-under-the-curve (mean ± SE) reflected no statistically significant differences after 7-day co-culture between 0 and 1500 MPs/IE (8.36 ± 0.29 and 8.45 ± 0.70 pg/ml·min·ngDNA for first-phase; 69.73 ± 2.18 and 65.70 ± 4.34 pg/ml·min·ngDNA for second-phase, respectively). Islets co-cultured with MPs normalized hyperglycemia in diabetic nude mice, suggesting no adverse effects on in vivo islet function. Implantation of MPs did not elicit tissue injury, inflammatory change or immune reactivity. CONCLUSION: MPs do not adversely affect islet viability or function during co-culture, and MPs are not immune reactive following implantation.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans/cytology , Islets of Langerhans/immunology , Islets of Langerhans/pathology , Microspheres , Transplantation, Heterologous/immunology , Animals , Cells, Cultured , Coculture Techniques , Diabetes Mellitus, Experimental/surgery , Female , Insulin/metabolism , Insulin Secretion , Magnetic Phenomena , Materials Testing , Mice , Mice, Inbred C57BL , Mice, Nude
16.
Biotechnol Bioeng ; 108(9): 2107-17, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21495008

ABSTRACT

Magnetic isolation is a promising method for separating and concentrating pancreatic islets of Langerhans for transplantation in Type 1 diabetes patients. We are developing a continuous magnetic islet sorter to overcome the restrictions of current purification methods that result in limited yield and viability. In Quadrupole Magnetic Sorting (QMS) islets are magnetized by infusing superparamagnetic microbeads into islets' vasculature via arteries that serve the pancreas. The performance of the islet sorter depends on the resulting speed of the islets in an applied magnetic field, a property known as magnetophoretic mobility. Essential to the design and successful operation of the QMS is a method to measure the magnetophoretic mobilities of magnetically infused islets. We have adapted a Magnetic Particle Tracking Velocimeter (MPTV) to measure the magnetophoretic mobility of particles up to 1,000 µm in diameter. Velocity measurements are performed in a well-characterized uniform magnetic energy gradient using video imaging followed by analysis of the video images with a computer algorithm that produces a histogram of absolute mobilities. MPTV was validated using magnetic agarose beads serving as islet surrogates and subjecting them to QMS. Mobility distributions of labeled porcine islets indicated that magnetized islets have sufficient mobility to be captured by the proposed sorting method, with this result confirmed in test isolations of magnetized islets.


Subject(s)
Cell Separation/methods , Ferrosoferric Oxide/chemistry , Islets of Langerhans/cytology , Microspheres , Rheology/methods , Animals , Islets of Langerhans/chemistry , Particle Size , Reproducibility of Results , Swine
17.
Lab Chip ; 8(8): 1398-401, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18651085

ABSTRACT

A continuously-fed crystallization chamber that allows for kinetic path control through the crystallization phase diagram (from labile/nucleation to metastable/growth) was fabricated and used to crystallize lysozyme. A lumped kinetic model was developed, and parameters for heterogeneous nucleation kinetics were determined. Heterogeneous nucleation was found to have faster nucleation kinetics and slower growth kinetics than homogeneous nucleation, as expected. The major contributions of the new device are (1) to allow better control of the chemical environment for studies of crystal nucleation and growth, and (2) to allow lumped-model analysis of those studies to extract kinetic parameters.


Subject(s)
Crystallization/instrumentation , Crystallization/methods , Proteins/chemistry , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods
18.
Gravit Space Biol Bull ; 18(2): 71-7, 2005 Jun.
Article in English | MEDLINE | ID: mdl-16038094

ABSTRACT

Major risks associated with radiation exposures on deep space missions include carcinogenesis due to heavy-particle exposure of cancer-prone tissues and performance decrements due to neurological damage produced by heavy particles. Because exposure to heavy particles can cause oxidative stress, it is possible that antioxidants can be used to mitigate these risks (and possibly some health risks of microgravity). To assess the capacity of antioxidant diets to mitigate the effects of exposure to heavy particles, rats were maintained on antioxidant diets containing 2% blueberry or strawberry extract or a control diet for 8 weeks prior to exposure to 1.5 or 2.0 Gy of accelerated iron particles at Brookhaven National Laboratory. Following irradiation rats were tested on a series of behavioral tasks: amphetamine-induced taste aversion learning, operant responding and spatial learning and memory. The results indicated that the performance of the irradiated rats maintained on the antioxidant diets was, in general, significantly better than that of the control animals, although the effectiveness of the diets ameliorating the radiation-induced deterioration in performance varied as a function of both the specific diet and the specific endpoint. In addition, animals fed antioxidant diets prior to exposure showed reduced heavy particle-induced tumorigenesis one year after exposure compared to the animals fed the control diet. These results suggest that antioxidant diets have the potential to serve as part of a system designed to provide protection to astronauts against the effects of heavy particles on exploratory missions outside the magnetic field of the earth.


Subject(s)
Cosmic Radiation/adverse effects , Heavy Ions/adverse effects , Neoplasms, Radiation-Induced/drug therapy , Plant Extracts/therapeutic use , Radiation Protection/methods , Aging/radiation effects , Animals , Antioxidants/therapeutic use , Behavior, Animal/drug effects , Behavior, Animal/radiation effects , Blueberry Plants , Central Nervous System/radiation effects , Cognition/radiation effects , Diet , Fragaria , Immunity/radiation effects , Neoplasms, Radiation-Induced/etiology , Neoplasms, Radiation-Induced/prevention & control , Oxidative Stress/radiation effects , Protons/adverse effects , Rats , Reactive Oxygen Species , Solar Activity , Space Flight
19.
Microgravity Sci Technol ; 15(1): 28-34, 2004.
Article in English | MEDLINE | ID: mdl-15773019

ABSTRACT

To understand further the role of gravity in osteoblast attachment, osteoblasts were subjected to hypergravity conditions in vitro. Scanning electron microscopy of all confluent coverslips from FPA units show that the number of attached osteoblasts was similar among gravitational levels and growth durations (~90 cells/microscopic field). Specifically, confluent 1.0 G control cultures contained an average of 91 +/- 8 cells/field, 3.3 G samples had 88 +/- 8 cells/field, and 4.0 G cultures averaged 90 +/- 7 cells/field. The sparsely plated cultures assessed by immunohistochemistry also had similar numbers of cells at each time point (l.0 G was similar to 3.3 and 4.0 G), but cell number changed from one time point to the next as those cells proliferated. Immunohistochemistry of centrifuged samples showed an increase in number (up to 160% increase) and thickness (up to 49% increase) of actin fibers, a decrease in intensity of fibronectin fluorescence (18-23% decrease) and an increase in number of vinculin bulbs (202-374% increase in number of vinculin bulbs/area). While hypergravity exposure did not alter the number of attached osteoblasts, it did result in altered actin, fibronectin, and vinculin elements, changing some aspects of osteoblast- substrate adhesion.


Subject(s)
Hypergravity , Osteoblasts/cytology , Osteoblasts/ultrastructure , Actins/metabolism , Animals , Cell Adhesion , Cell Size , Centrifugation , Chick Embryo , Cytoskeleton/ultrastructure , Fibronectins/metabolism , Microscopy, Electron, Scanning , Osteoblasts/physiology , Vinculin/metabolism
20.
J Gravit Physiol ; 11(1): 11-6, 2004 Mar.
Article in English | MEDLINE | ID: mdl-16145795

ABSTRACT

Variables studied in typical cellular radiation biology experiments are cell killing, mutagenesis, transformation to malignancy, heritable damage, and DNA damage and repair. Dose response curves for cells exposed to low-LET radiations and some high LET radiations are well known. The low-LET dose rate in low earth orbit is roughly 1.0 mSv/day, the heavy-ion (Z>2) flux is about 1.0 particle/cm2-s corresponding to about 0.3 mSv/day, and the integrated neutron flux is roughly 2 neutrons/cm2-s corresponding to 0.012 mGy/d or, assuming a QF of 10, 0.12 mSv/d. Published dose-response curves were used to estimate the probability that a mammalian cell will be affected by each of the above types of damage. As a general approximation the exposure of an experimental cell population to the space radiation environment for 100 days will result in the following probabilities of damage per cell: cell killing based on clonogenicity 0.02, mutagenesis per locus based on phenotype analysis 1 x 10(-6), point mutation induction 2 x 10(-8) per locus, malignant transformation in vitro based on colony morphology 1.2 x 10(-5), heritable damage based on colony size 0.02, and induced DNA double-strand breaks based on fragment analysis by electrophoresis 3.5/cell or 0.26/cell after repair. Most of these figures are accurate to within a factor of 2. Thus the spaceflight radiation environment has essentially undetectable impact on typical cell biology experiments unless experimental goals involve the precise measurement of one of the above end-points. Other in vitro end-points, such as tissue morphogenesis and cell differentiation, are expected to be similarly unaffected by the spaceflight radiation environment.


Subject(s)
Cell Physiological Phenomena/radiation effects , Cosmic Radiation , Space Flight , Animals , Bacteria/cytology , Bacteria/radiation effects , Cell Death/radiation effects , Cell Division/radiation effects , Cell Transformation, Neoplastic/radiation effects , Cricetinae , DNA Damage , Dose-Response Relationship, Radiation , Humans , Linear Energy Transfer , Mutagenesis , Neutrons , Radiation Dosage , Yeasts/cytology , Yeasts/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...