Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 9(1): 2562, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29967415

ABSTRACT

Soil heterotrophic respiration (HR) is an important source of soil-to-atmosphere CO2 flux, but its response to changes in soil water content (θ) is poorly understood. Earth system models commonly use empirical moisture functions to describe the HR-θ relationship, introducing significant uncertainty in predicting CO2 flux from soils. Generalized, mechanistic models that address this uncertainty are thus urgently needed. Here we derive, test, and calibrate a novel moisture function, fm, that encapsulates primary physicochemical and biological processes controlling soil HR. We validated fm using simulation results and published experimental data, and established the quantitative relationships between parameters of fm and measurable soil properties, which enables fm to predict the HR-θ relationships for different soils across spatial scales. The fm function predicted comparable HR-θ relationships with laboratory and field measurements, and may reduce the uncertainty in predicting the response of soil organic carbon stocks to climate change compared with the empirical moisture functions currently used in Earth system models.

2.
Glob Chang Biol ; 24(3): 895-905, 2018 03.
Article in English | MEDLINE | ID: mdl-28991399

ABSTRACT

The complexity of processes and interactions that drive soil C dynamics necessitate the use of proxy variables to represent soil characteristics that cannot be directly measured (correlative proxies), or that aggregate information about multiple soil characteristics into one variable (integrative proxies). These proxies have proven useful for understanding the soil C cycle, which is highly variable in both space and time, and are now being used to make predictions of the fate and persistence of C under future climate scenarios. However, the C pools and processes that proxies represent must be thoughtfully considered in order to minimize uncertainties in empirical understanding. This is necessary to capture the full value of a proxy in model parameters and in model outcomes. Here, we provide specific examples of proxy variables that could improve decision-making, and modeling skill, while also encouraging continued work on their mechanistic underpinnings. We explore the use of three common soil proxies used to study soil C cycling: metabolic quotient, clay content, and physical fractionation. We also consider how emerging data types, such as genome-sequence data, can serve as proxies for microbial community activities. By examining some broad assumptions in soil C cycling with the proxies already in use, we can develop new hypotheses and specify criteria for new and needed proxies.


Subject(s)
Carbon Cycle , Carbon/chemistry , Climate Change , Soil/chemistry , Carbon/metabolism , Models, Theoretical , Soil Microbiology
3.
Glob Chang Biol ; 24(2): e705-e718, 2018 02.
Article in English | MEDLINE | ID: mdl-28981192

ABSTRACT

Soil organic matter (SOM) supports the Earth's ability to sustain terrestrial ecosystems, provide food and fiber, and retains the largest pool of actively cycling carbon. Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerable to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil-management best practices should be based on well established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of SOM and SOC and their management for sustained production and climate regulation.


Subject(s)
Carbon Sequestration , Carbon/chemistry , Ecosystem , International Cooperation , Soil/chemistry , Agriculture , Carbon Cycle , Climate , Climate Change , Databases, Factual , Models, Theoretical
4.
J Math Biol ; 73(6-7): 1379-1398, 2016 12.
Article in English | MEDLINE | ID: mdl-27038163

ABSTRACT

We develop a theory for transit times and mean ages for nonautonomous compartmental systems. Using the McKendrick-von Förster equation, we show that the mean ages of mass in a compartmental system satisfy a linear nonautonomous ordinary differential equation that is exponentially stable. We then define a nonautonomous version of transit time as the mean age of mass leaving the compartmental system at a particular time and show that our nonautonomous theory generalises the autonomous case. We apply these results to study a nine-dimensional nonautonomous compartmental system modeling the terrestrial carbon cycle, which is a modification of the Carnegie-Ames-Stanford approach model, and we demonstrate that the nonautonomous versions of transit time and mean age differ significantly from the autonomous quantities when calculated for that model.


Subject(s)
Carbon Cycle , Models, Biological , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...