Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Malar J ; 23(1): 164, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789998

ABSTRACT

BACKGROUND: Nets containing pyriproxyfen, an insect growth regulator that sterilizes adult mosquitoes, have become available for malaria control. Suitable methods for investigating vector susceptibility to pyriproxyfen and evaluating its efficacy on nets need to be identified. The sterilizing effects of pyriproxyfen on adult malaria vectors can be assessed by measuring oviposition or by dissecting mosquito ovaries to determine damage by pyriproxyfen (ovary dissection). METHOD: Laboratory bioassays were performed to compare the oviposition and ovary dissection methods for monitoring susceptibility to pyriproxyfen in wild malaria vectors using WHO bottle bioassays and for evaluating its efficacy on nets in cone bioassays. Blood-fed mosquitoes of susceptible and pyrethroid-resistant strains of Anopheles gambiae sensu lato were exposed to pyriproxyfen-treated bottles (100 µg and 200 µg) and to unwashed and washed pieces of a pyriproxyfen long-lasting net in cone bioassays. Survivors were assessed for the sterilizing effects of pyriproxyfen using both methods. The methods were compared in terms of their reliability, sensitivity, specificity, resources (cost and time) required and perceived difficulties by trained laboratory technicians. RESULTS: The total number of An. gambiae s.l. mosquitoes assessed for the sterilizing effects of pyriproxyfen were 1745 for the oviposition method and 1698 for the ovary dissection method. Fertility rates of control unexposed mosquitoes were significantly higher with ovary dissection compared to oviposition in both bottle bioassays (99-100% vs. 34-59%, P < 0.05) and cone bioassays (99-100% vs. 18-33%, P < 0.001). Oviposition rates of control unexposed mosquitoes were lower with wild pyrethroid-resistant An. gambiae s.l. Cové, compared to the laboratory-maintained reference susceptible An gambiae sensu stricto Kisumu (18-34% vs. 58-76%, P < 0.05). Sterilization rates of the Kisumu strain in bottle bioassays with the pyriproxyfen diagnostic dose (100 µg) were suboptimal with the oviposition method (90%) but showed full susceptibility with ovary dissection (99%). Wild pyrethroid-resistant Cové mosquitoes were fully susceptible to pyriproxyfen in bottle bioassays using ovary dissection (> 99%), but not with the oviposition method (69%). Both methods showed similar levels of sensitivity (89-98% vs. 89-100%). Specificity was substantially higher with ovary dissection compared to the oviposition method in both bottle bioassays (99-100% vs. 34-48%) and cone tests (100% vs.18-76%). Ovary dissection was also more sensitive for detecting the residual activity of pyriproxyfen in a washed net compared to oviposition. The oviposition method though cheaper, was less reliable and more time-consuming. Laboratory technicians preferred ovary dissection mostly due to its reliability. CONCLUSION: The ovary dissection method was more accurate, more reliable and more efficient compared to the oviposition method for evaluating the sterilizing effects of pyriproxyfen on adult malaria vectors in susceptibility bioassays and for evaluating the efficacy of pyriproxyfen-treated nets.


Subject(s)
Anopheles , Insecticides , Ovary , Oviposition , Pyridines , Animals , Pyridines/pharmacology , Anopheles/drug effects , Anopheles/physiology , Female , Oviposition/drug effects , Ovary/drug effects , Insecticides/pharmacology , Mosquito Control/methods , Mosquito Vectors/drug effects , Biological Assay/methods
2.
Parasit Vectors ; 17(1): 183, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600549

ABSTRACT

BACKGROUND: Clothianidin-based indoor residual spraying (IRS) formulations have become available for malaria control as either solo formulations of clothianidin or a mixture of clothianidin with the pyrethroid deltamethrin. While both formulations have been successfully used for malaria control, studies investigating the effect of the pyrethroid in IRS mixtures may help improve our understanding for development of future IRS products. It has been speculated that the irritant effect of the pyrethroid in the mixture formulation may result in shorter mosquito contact times with the treated walls potentially leading to a lower impact. METHODS: We compared contact irritancy expressed as the number of mosquito take-offs from cement surfaces treated with an IRS formulation containing clothianidin alone (SumiShield® 50WG) to clothianidin-deltamethrin mixture IRS formulations against pyrethroid-resistant Anopheles gambiae sensu lato under controlled laboratory conditions using a modified version of the World Health Organisation cone bioassay. To control for the pyrethroid, comparison was made with a deltamethrin-only formulation. Both commercial and generic non-commercial mixture formulations of clothianidin and deltamethrin were tested. RESULTS: The clothianidin solo formulation did not show significant contact irritancy relative to the untreated control (3.5 take-offs vs. 3.1 take-offs, p = 0.614) while all deltamethrin-containing IRS induced significant irritant effects. The number of take-offs compared to the clothianidin solo formulation (3.5) was significantly higher with the commercial clothianidin-deltamethrin mixture (6.1, p = 0.001), generic clothianidin-deltamethrin mixture (7.0, p < 0.001), and deltamethrin-only (8.2, p < 0.001) formulations. The commercial clothianidin-deltamethrin mixture induced similar contact irritancy as the generic clothianidin-deltamethrin mixture (6.1 take-offs vs. 7.0 take-offs, p = 0.263) and deltamethrin-only IRS (6.1 take-offs vs. 8.2, p = 0.071), showing that the irritant effect in the mixture was attributable to its deltamethrin component. CONCLUSIONS: This study provides evidence that the enhanced contact irritancy of the pyrethroid in clothianidin-deltamethrin IRS mixtures can shorten mosquito contact times with treated walls compared to the clothianidin solo formulation. Further trials are needed to directly compare the efficacy of these formulation types under field conditions and establish the impact of this enhanced contact irritancy on the performance of IRS mixture formulations containing pyrethroids.


Subject(s)
Anopheles , Guanidines , Insecticides , Malaria , Neonicotinoids , Nitriles , Pyrethrins , Thiazoles , Animals , Insecticides/pharmacology , Irritants/pharmacology , Mosquito Control , Pyrethrins/pharmacology , Malaria/prevention & control , Insecticide Resistance , Mosquito Vectors
3.
Sci Rep ; 13(1): 12232, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37507423

ABSTRACT

Pyrethroid-chlorfenapyr nets have demonstrated improved entomological and epidemiological impact in trials across Africa. This is driving increased demand for this novel net class in malaria-endemic countries. PermaNet Dual is a new deltamethrin-chlorfenapyr net developed by Vestergaard Sàrl to provide more options to malaria control programmes. We performed an experimental hut trial to evaluate the efficacy of PermaNet Dual against wild, free-flying pyrethroid-resistant Anopheles gambiae sensu lato in Covè, Benin. PermaNet Dual induced superior levels of mosquito mortality compared to a pyrethroid-only net and a pyrethroid-piperonyl butoxide net both when unwashed (77% with PermaNet Dual vs. 23% with PermaNet 2.0 and 56% with PermaNet 3.0, p < 0.001) and after 20 standardised washes (75% with PermaNet Dual vs. 14% with PermaNet 2.0 and 30% with PermaNet 3.0, p < 0.001). Using a provisional non-inferiority margin defined by the World Health Organisation, PermaNet Dual was also non-inferior to a pyrethroid-chlorfenapyr net that has demonstrated improved public health value (Interceptor G2), for vector mortality (79% vs. 76%, OR = 0.878, 95% CIs 0.719-1.073) but not for blood-feeding protection (35% vs. 26%, OR = 1.424, 95% CIs 1.177-1.723). PermaNet Dual presents an additional option of this highly effective net class for improved control of malaria transmitted by pyrethroid-resistant mosquitoes.


Subject(s)
Anopheles , Insecticide-Treated Bednets , Insecticides , Malaria , Pyrethrins , Animals , Humans , Insecticides/pharmacology , Benin/epidemiology , Mosquito Control , Mosquito Vectors , Pyrethrins/pharmacology , Malaria/prevention & control , Insecticide Resistance
4.
PLoS One ; 18(3): e0276246, 2023.
Article in English | MEDLINE | ID: mdl-36952515

ABSTRACT

BACKGROUND: Broflanilide is a new insecticide being developed for malaria vector control. As new insecticide chemistries become available, strategies to preserve the susceptibility of local malaria vectors and extend their useful life need to be considered before large scale deployment. This requires the development of appropriate testing procedures and identification of suitable discriminating concentrations for monitoring susceptibility in wild vector populations to facilitate decision making by control programmes. METHODS: Dose-response WHO bottle bioassays were conducted using the insecticide-susceptible Anopheles gambiae s.s. Kisumu strain to determine a discriminating concentration of broflanilide. Bioassays were performed without the adjuvant Mero® and with two concentrations of Mero® (500 ppm and 800 ppm) to investigate its impact on the discriminating concentration of the insecticide. Probit analysis was used to determine the lethal doses at 50% (LC50) and 99% (LC99) at 24-, 48- and 72-hours post-exposure. Cross-resistance to broflanilide and pyrethroids, DDT, dieldrin and carbamates, was investigated using An. gambiae s.l. Covè and An. coluzzii Akron strains. The susceptibility of wild pyrethroid-resistant mosquitoes from communities in Southern Benin to broflanilide was assessed using the estimated discriminating concentrations. RESULTS: Broflanilide induced a dose-dependent and delayed mortality effect. Mortality rates in bottles treated without Mero® were <80% using the range of broflanilide doses tested (0-100 µg/bottle) leading to high and unreliable estimates of LC99 values. The discriminating concentrations defined as 2XLC99 at 72h post exposure were estimated to be 2.2 µg/bottle with 800 ppm of Mero® and 6.0 µg/bottle with 500 ppm of Mero®. Very low resistance ratios (0.6-1.2) were determined with the insecticide resistant An. gambiae s.l. Covè and An. coluzzii Akron strains suggesting the absence of cross-resistance via the mechanisms of resistance to pyrethroids, DDT, dieldrin and carbamates they possess. Bottle bioassays performed with broflanilide at both discriminating concentrations of 6 µg/bottle with 500 ppm of Mero® and 2.2 µg/bottle with 800 ppm of Mero®, showed susceptibility of wild highly pyrethroid-resistant An. gambiae s.l. from villages in Southern Benin. CONCLUSION: We determined discriminating concentrations for monitoring susceptibility to broflanilide in bottle bioassays, using susceptible An. gambiae vectors. Using the estimated discriminating concentrations, we showed that wild pyrethroid-resistant populations of An. gambiae s.l. from southern Benin were fully susceptible to the insecticide. Broflanilide also shows potential to be highly effective against An. gambiae s.l. vector populations that have developed resistance to other public health insecticides.


Subject(s)
Anopheles , Insecticides , Malaria , Pyrethrins , Animals , Humans , Insecticides/pharmacology , Dieldrin/pharmacology , DDT/pharmacology , Insecticide Resistance , Mosquito Vectors , Pyrethrins/pharmacology , Mosquito Control/methods , Carbamates/pharmacology , Biological Assay , World Health Organization
5.
Malar J ; 21(1): 324, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36369006

ABSTRACT

BACKGROUND: Broflanilide is a newly discovered insecticide with a novel mode of action targeting insect γ-aminobutyric acid receptors. The efficacy of VECTRON™ T500, a wettable powder formulation of broflanilide, was assessed for IRS against wild pyrethroid-resistant malaria vectors in experimental huts in Benin. METHODS: VECTRON™ T500 was evaluated at 100 mg/m2 in mud and cement-walled experimental huts against wild pyrethroid-resistant Anopheles gambiae sensu lato (s.l.) in Covè, southern Benin, over 18 months. A direct comparison was made with Actellic® 300CS, a WHO-recommended micro-encapsulated formulation of pirimiphos-methyl, applied at 1000 mg/m2. The vector population at Covè was investigated for susceptibility to broflanilide and other classes of insecticides used for vector control. Monthly wall cone bioassays were performed to assess the residual efficacy of VECTRON™ T500 using insecticide susceptible An. gambiae Kisumu and pyrethroid-resistant An. gambiae s.l. Covè strains. The study complied with OECD principles of good laboratory practice. RESULTS: The vector population at Covè was resistant to pyrethroids and organochlorines but susceptible to broflanilide and pirimiphos-methyl. A total of 23,171 free-flying wild pyrethroid-resistant female An. gambiae s.l. were collected in the experimental huts over 12 months. VECTRON™ T500 induced 56%-60% mortality in wild vector mosquitoes in both cement and mud-walled huts. Mortality with VECTRON™ T500 was 62%-73% in the first three months and remained > 50% for 9 months on both substrate-types. By comparison, mortality with Actellic® 300CS was very high in the first three months (72%-95%) but declined sharply to < 40% after 4 months. Using a non-inferiority margin defined by the World Health Organization, overall mortality achieved with VECTRON™ T500 was non-inferior to that observed in huts treated with Actellic® 300CS with both cement and mud wall substrates. Monthly in situ wall cone bioassay mortality with VECTRON™ T500 also remained over 80% for 18 months but dropped below 80% with Actellic® 300CS at 6-7 months post spraying. CONCLUSION: VECTRON™ T500 shows potential to provide substantial and prolonged control of malaria transmitted by pyrethroid-resistant mosquito vectors when applied for IRS. Its addition to the current list of WHO-approved IRS insecticides will provide a suitable option to facilitate rotation of IRS products with different modes of action.


Subject(s)
Anopheles , Insecticides , Malaria , Pyrethrins , Animals , Female , Humans , Pyrethrins/pharmacology , Insecticides/pharmacology , Malaria/prevention & control , Malaria/epidemiology , Mosquito Vectors , Mosquito Control , Insecticide Resistance
6.
Sci Rep ; 12(1): 6857, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35478216

ABSTRACT

Pirimiphos-methyl is a pro-insecticide requiring activation by mosquito cytochrome P450 enzymes to induce toxicity while PBO blocks activation of these enzymes in pyrethroid-resistant vector mosquitoes. PBO may thus antagonise the toxicity of pirimiphos-methyl IRS when combined with pyrethroid-PBO ITNs. The impact of combining Olyset Plus and PermaNet 3.0 with Actellic 300CS IRS was evaluated against pyrethroid-resistant Anopheles gambiae s.l. in two parallel experimental hut trials in southern Benin. The vector population was resistant to pyrethroids and PBO pre-exposure partially restored deltamethrin toxicity but not permethrin. Mosquito mortality in experimental huts was significantly improved in the combinations of bendiocarb IRS with pyrethroid-PBO ITNs (33-38%) compared to bendiocarb IRS alone (14-16%, p < 0.001), demonstrating an additive effect. Conversely, mortality was significantly reduced in the combinations of pirimiphos-methyl IRS with pyrethroid-PBO ITNs (55-59%) compared to pirimiphos-methyl IRS alone (77-78%, p < 0.001), demonstrating evidence of an antagonistic effect when both interventions are applied in the same household. Mosquito mortality in the combination was significantly higher compared to the pyrethroid-PBO ITNs alone (55-59% vs. 22-26% p < 0.001) showing potential of pirimiphos-methyl IRS to enhance vector control when deployed to complement pyrethroid-PBO ITNs in an area where PBO fails to fully restore susceptibility to pyrethroids.


Subject(s)
Anopheles , Malaria , Pyrethrins , Animals , Insecticide Resistance , Malaria/prevention & control , Mosquito Control , Mosquito Vectors , Organothiophosphorus Compounds , Piperonyl Butoxide/pharmacology , Pyrethrins/toxicity
7.
PLoS One ; 16(1): e0245804, 2021.
Article in English | MEDLINE | ID: mdl-33507978

ABSTRACT

BACKGROUND: Where resources are available, non-pyrethroid IRS can be deployed to complement standard pyrethroid LLINs with the aim of achieving improved vector control and managing insecticide resistance. The impact of the combination may however depend on the type of IRS insecticide deployed. Studies comparing combinations of pyrethroid LLINs with different types of non-pyrethroid IRS products will be necessary for decision making. METHODS: The efficacy of combining a standard pyrethroid LLIN (DuraNet®) with IRS insecticides from three chemical classes (bendiocarb, chlorfenapyr and pirimiphos-methyl CS) was evaluated in an experimental hut trial against wild pyrethroid-resistant Anopheles gambiae s.l. in Cové, Benin. The combinations were also compared to each intervention alone. WHO cylinder and CDC bottle bioassays were performed to assess susceptibility of the local An. gambiae s.l. vector population at the Cové hut site to insecticides used in the combinations. RESULTS: Susceptibility bioassays revealed that the vector population at Cové, was resistant to pyrethroids (<20% mortality) but susceptible to carbamates, chlorfenapyr and organophosphates (≥98% mortality). Mortality of wild free-flying pyrethroid resistant An. gambiae s.l. entering the hut with the untreated net control (4%) did not differ significantly from DuraNet® alone (8%, p = 0.169). Pirimiphos-methyl CS IRS induced the highest mortality both on its own (85%) and in combination with DuraNet® (81%). Mortality with the DuraNet® + chlorfenapyr IRS combination was significantly higher than each intervention alone (46% vs. 33% and 8%, p<0.05) demonstrating an additive effect. The DuraNet® + bendiocarb IRS combination induced significantly lower mortality compared to the other combinations (32%, p<0.05). Blood-feeding inhibition was very low with the IRS treatments alone (3-5%) but increased significantly when they were combined with DuraNet® (61% - 71%, p<0.05). Blood-feeding rates in the combinations were similar to the net alone. Adding bendiocarb IRS to DuraNet® induced significantly lower levels of mosquito feeding compared to adding chlorfenapyr IRS (28% vs. 37%, p = 0.015). CONCLUSIONS: Adding non-pyrethroid IRS to standard pyrethroid-only LLINs against a pyrethroid-resistant vector population which is susceptible to the IRS insecticide, can provide higher levels of vector mosquito control compared to the pyrethroid net alone or IRS alone. Adding pirimiphos-methyl CS IRS may provide substantial improvements in vector control while adding chlorfenapyr IRS can demonstrate an additive effect relative to both interventions alone. Adding bendiocarb IRS may show limited enhancements in vector control owing to its short residual effect.


Subject(s)
Anopheles/drug effects , Insecticide Resistance , Insecticide-Treated Bednets/statistics & numerical data , Insecticides/pharmacology , Malaria/prevention & control , Mosquito Control/methods , Pyrethrins/pharmacology , Animals , Anopheles/growth & development , Biological Assay , Feeding Behavior , Female , Malaria/parasitology , Malaria/transmission
8.
Malar J ; 16(1): 340, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28814307

ABSTRACT

BACKGROUND: Malaria control today is threatened by widespread insecticide resistance in vector populations. The World Health Organization (WHO) recommends the use of a mixture of unrelated insecticides for indoor residual spraying (IRS) and long-lasting insecticidal nets (LNs) or as a combination of interventions for improved vector control and insecticide resistance management. Studies investigating the efficacy of these different strategies are necessary. METHODS: The efficacy of Interceptor® G2 LN, a newly developed LN treated with a mixture of chlorfenapyr (a pyrrole) and alpha-cypermethrin (a pyrethroid), was compared to a combined chlorfenapyr IRS and Interceptor® LN (a standard alpha-cypermethrin LN) intervention in experimental huts in Cove Southern Benin, against wild, free-flying, pyrethroid-resistant Anopheles gambiae s.l. A direct comparison was also made with a pyrethroid-only net (Interceptor® LN) alone and chorfenapyr IRS alone. RESULTS: WHO resistance bioassays performed during the trial demonstrated a pyrethroid resistance frequency of >90% in the wild An. gambiae s.l. from the Cove hut site. Mortality in the control (untreated net) hut was 5%. Mortality with Interceptor® LN (24%) was lower than with chlorfenapyr IRS alone (59%, P < 0.001). The combined Interceptor® LN and chlorfenapyr IRS intervention and the mixture net (Interceptor® G2 LN) provided significantly higher mortality rates (73 and 76%, respectively) and these did not differ significantly between both treatments (P = 0.15). Interceptor LN induced 46% blood-feeding inhibition compared to the control untreated net, while chlorfenapyr IRS alone provided none. Both mixture/combination strategies also induced substantial levels of blood-feeding inhibition (38% with combined interventions and 30% with Interceptor® G2 LN). A similar trend of improved mortality of pyrethroid-resistant An. gambiae s.l. from Cove was observed with Interceptor® G2 LN (79%) compared to Interceptor LN (42%, P < 0.001) in WHO tunnel tests. CONCLUSION: The use of chlorfenapyr and alpha-cypermethrin together as a mixture on nets (Interceptor® G2 LN) or a combined chlorfenapyr IRS and pyrethroid LN intervention provides improved control of pyrethroid-resistant malaria vectors by inducing significantly higher levels of mortality through the chlorfenapyr component and providing personal protection through the pyrethroid component. Both strategies are comparable in their potential to improve the control of malaria transmitted by pyrethroid resistant mosquito vectors.


Subject(s)
Anopheles , Insecticide-Treated Bednets , Insecticides , Malaria/prevention & control , Mosquito Control/methods , Mosquito Vectors , Pyrethrins , Animals , Female
9.
PLoS One ; 11(9): e0162210, 2016.
Article in English | MEDLINE | ID: mdl-27588945

ABSTRACT

BACKGROUND: Indoor spraying of walls and ceilings with residual insecticide remains a primary method of malaria control. Insecticide resistance in malaria vectors is a growing problem. Novel insecticides for indoor residual spraying (IRS) which can improve the control of pyrethroid resistant malaria vectors are urgently needed. Insecticide mixtures have the potential to improve efficacy or even to manage resistance in some situations but this possibility remains underexplored experimentally. Chlorfenapyr is a novel pyrrole insecticide which has shown potential to improve the control of mosquitoes which are resistant to current WHO-approved insecticides. METHOD: The efficacy of IRS with chlorfenapyr applied alone or as a mixture with alpha-cypermeththrin (a pyrethroid) was evaluated in experimental huts in Cove, Southern Benin against wild free flying pyrethroid resistant Anopheles gambiae sl. Comparison was made with IRS with alpha-cypermethrin alone. Fortnightly 30-minute in situ cone bioassays were performed to assess the residual efficacy of the insecticides on the treated hut walls. RESULTS: Survival rates of wild An gambiae from the Cove hut site in WHO resistance bioassays performed during the trial were >90% with permethrin and deltamethrin treated papers. Mortality of free-flying mosquitoes entering the experimental huts was 4% in the control hut. Mortality with alpha-cypermethrin IRS did not differ from the control (5%, P>0.656). The highest mortality was achieved with chlorfenapyr alone (63%). The alpha-cypermethrin + chlorfenapyr mixture killed fewer mosquitoes than chlorfenapyr alone (43% vs. 63%, P<0.001). While the cone bioassays showed a more rapid decline in residual mortality with chlorfenapyr IRS to <30% after only 2 weeks, fortnightly mortality rates of wild free-flying An gambiae entering the chlorfenapyr IRS huts were consistently high (50-70%) and prolonged, lasting over 4 months. CONCLUSION: IRS with chlorfenapyr shows potential to significantly improve the control of malaria transmission in pyrethroid resistant areas compared to pyrethroid IRS or the mixture. Thirty minute in situ cone bioassays are not predictive of the performance of chlorfenapyr IRS under field conditions.


Subject(s)
Anopheles/drug effects , Insecticide Resistance/drug effects , Insecticides/pharmacology , Mosquito Control/methods , Pyrethrins/pharmacology , Animals , Benin , Malaria/prevention & control
10.
Sci Transl Med ; 8(356): 356ra121, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27629488

ABSTRACT

Olyset Duo is a new long-lasting insecticidal net treated with permethrin (a pyrethroid) and pyriproxyfen, an insect growth regulator that disrupts the maturation of oocytes in mosquitoes exposed to the net. We tested the Olyset Duo net against pyrethroid-resistant Anopheles gambiae mosquitoes, which transmit malaria parasites, in laboratory bioassays and in a trial in Benin using experimental huts that closely resemble local habitations. Host-seeking mosquitoes that entered to feed were free to contact the occupied nets and were collected the next morning from exit traps. Surviving blood-fed mosquitoes were observed for effects on reproduction. Control nets were treated with pyrethroid only or pyriproxyfen only, and nets were tested unwashed and after 20 standardized washes. The Olyset Duo net showed improved efficacy and wash resistance relative to the pyrethroid-treated net in terms of mosquito mortality and prevention of blood feeding. The production of offspring among surviving blood-fed A. gambiae in the hut trial was reduced by the pyriproxyfen-treated net and the Olyset Duo net both before washing (90 and 71% reduction, respectively) and after washing (38 and 43% reduction, respectively). The degree of reproductive suppression in the hut trial was predicted by laboratory tunnel tests but not by cone bioassays. The overall reduction in reproductive rate of A. gambiae with the Olyset Duo net in the trial was 94% with no washing and 78% after 20 washes. The Olyset Duo net has the potential to provide community control of mosquito populations and reduce malaria transmission in areas of high insecticide resistance.


Subject(s)
Insecticide-Treated Bednets , Malaria/prevention & control , Mosquito Vectors , Animals , Anopheles , Biological Assay , Female , Humans , Insecticide Resistance , Insecticides , Malaria/transmission , Permethrin , Pyrethrins , Pyridines , Translational Research, Biomedical , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL
...