Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34820044

ABSTRACT

Errors in soil moisture adversely impact the modeling of land-atmosphere water and energy fluxes and, consequently, near-surface atmospheric conditions in atmospheric data assimilation systems (ADAS). To mitigate such errors, a land surface analysis is included in many such systems, although not yet in the currently operational NASA Goddard Earth Observing System (GEOS) ADAS. This article investigates the assimilation of L-band brightness temperature (Tb) observations from the Soil Moisture Active Passive (SMAP) mission in the GEOS weakly coupled land-atmosphere data assimilation system (LADAS) during boreal summer 2017. The SMAP Tb analysis improves the correlation of LADAS surface and root-zone soil moisture versus in situ measurements by ~0.1-0.26 over that of ADAS estimates; the unbiased root-mean-square error of LADAS soil moisture is reduced by 0.002-0.008 m3/m3 from that of ADAS. Furthermore, the global land average RMSE versus in situ measurements of screen-level air specific humidity (q2m) and daily maximum temperature (T2mmax) is reduced by 0.05 g/kg and 0.04 K, respectively, for LADAS compared to ADAS estimates. Regionally, the RMSE of LADAS q2m and T2mmax is improved by up to 0.4 g/kg and 0.3 K, respectively. Improvement in LADAS specific humidity extends into the lower troposphere (below ~700 mb), with relative improvements in bias of 15-25%, although LADAS air temperature bias slightly increases relative to that of ADAS. Finally, the root mean square of the LADAS Tb observation-minus-forecast residuals is smaller by up to ~0.1 K than in a land-only assimilation system, corroborating the positive impact of the Tb analysis on the modeled land-atmosphere coupling.

2.
Mon Weather Rev ; 146(10): 3259-3275, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30573923

ABSTRACT

A recent attempt to downscale the 50 km MERRA-2 analyses to 7 km revealed an instability associated with the Incremental Analysis Update (IAU) procedure that has thus far gone unnoticed. A theoretical study based on a simple damped harmonic oscillator with complex frequency provides the framework to diagnose the problem and suggests means to avoid it. Three possible approaches to avoid the instability are to: (i) choose an "ideal" ratio of the lengths of the Predictor and Corrector steps of IAU based on a theoretical stability diagram; (ii) time average the background fields used to construct the IAU tendencies with given frequency; or (iii) apply a digital filter modulation to the IAU tendencies. All these are shown to control the instability for a wide range of resolutions when doing up- or down-scaling, experiments with the NASA/GMAO atmospheric general circulation model. Furthermore, it is found that combining IAU with the ensemble re-centering step typical of hybrid ensemble-variational approaches, also results in an instability based on the same mechanisms in the members of the ensemble. An example of such occurrence arises in an experiment performed with the GMAO 12.8 km hybrid 4D-EnVar system. Modulation of the ensemble IAU tendencies with a digital filter is shown to avoid the instability. In addition, the stability of certain 4DIAU implementations is analyzed and a suggestion is made to improve its results, though a complete study of this subject is postponed to a follow up work.

3.
Q J R Meteorol Soc ; 143(703 Pt B): 1032-1046, 2017 Jan.
Article in English | MEDLINE | ID: mdl-29628531

ABSTRACT

The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modeling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extends beyond the thermal IR bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld, in-situ buoy measurement of near-surface SST. Evaluation of forecast skill scores show marginal to neutral benefit from the modified Ts.

4.
J Clim ; Volume 30(Iss 13): 5419-5454, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-32020988

ABSTRACT

The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) is the latest atmospheric reanalysis of the modern satellite era produced by NASA's Global Modeling and Assimilation Office (GMAO). MERRA-2 assimilates observation types not available to its predecessor, MERRA, and includes updates to the Goddard Earth Observing System (GEOS) model and analysis scheme so as to provide a viable ongoing climate analysis beyond MERRA's terminus. While addressing known limitations of MERRA, MERRA-2 is also intended to be a development milestone for a future integrated Earth system analysis (IESA) currently under development at GMAO. This paper provides an overview of the MERRA-2 system and various performance metrics. Among the advances in MERRA-2 relevant to IESA are the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes. Other improvements in the quality of MERRA-2 compared with MERRA include the reduction of some spurious trends and jumps related to changes in the observing system, and reduced biases and imbalances in aspects of the water cycle. Remaining deficiencies are also identified. Production of MERRA-2 began in June 2014 in four processing streams, and converged to a single near-real time stream in mid 2015. MERRA-2 products are accessible online through the NASA Goddard Earth Sciences Data Information Services Center (GES DISC).

5.
Q J R Meteorol Soc ; 142(697): 1565-1573, 2016 Apr.
Article in English | MEDLINE | ID: mdl-29643569

ABSTRACT

This study describes the modifications made to the Goddard Earth Observing System (GEOS) Atmospheric Data Assimilation System (ADAS) to conserve atmospheric dry-air mass and to guarantee that the net source of water from precipitation and surface evaporation equals the change in total atmospheric water. The modifications involve changes to both the atmospheric model and the analysis procedure. In the model, sources and sinks of water are included in the continuity equation; in the analysis, constraints are imposed to penalize (and thus minimize) analysis increments of dry-air mass. Finally, changes are also required to the Incremental Analysis Update (IAU) procedure. The effects of these modifications are separately evaluated in free-running and assimilation experiments. Results are also presented from a multiyear reanalysis (Version 2 of the Modern Era Retrospective-Analysis for Research and Applications: MERRA-2) that uses the modified system.

SELECTION OF CITATIONS
SEARCH DETAIL
...