Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 99(4): 1341-1347, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34189725

ABSTRACT

Fishes expressing a fluorescent protein in germ cells are useful to perform germ cell transfer experiments for conservation study. Nonetheless, no such fish has been generated in endangered endemic fishes. In this study, we tried to produce a fish expressing Venus fluorescent protein in germ cells using Honmoroko (Gnathopogon caerulescens), which is one of the threatened small cyprinid endemic to the ancient Lake Biwa in Japan. To achieve germ cell-specific expression of Venus, we used piwil1 (formally known as ziwi) promoter and Tol2 transposon system. Following the co-injection of the piwil1-Venus expression vector and the Tol2 transposase mRNA into fertilized eggs, presumptive transgenic fish were reared. At 7 months of post-fertilization, about 19% (10/52) of the examined larvae showed Venus fluorescence in their gonad specifically. Immunohistological staining and in vitro spermatogenesis using gonads of the juvenile founder fish revealed that Venus expression was detected in spermatogonia and spermatocyte in male, and oogonia and stage I and II oocytes in female. These results indicate that the Tol2 transposon and zebrafish piwil1 promoter enabled gene transfer and germ cell-specific expression of Venus in G. caerulescens. In addition, in vitro culture of juvenile spermatogonia enables the rapid validation of temporal expression of transgene during spermatogenesis.


Subject(s)
Cyprinidae , Animals , Cyprinidae/genetics , Female , Gene Transfer Techniques , Male , Spermatogonia , Zebrafish/genetics
2.
Fish Physiol Biochem ; 44(2): 503-513, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29192358

ABSTRACT

We investigated the feasibility of cryopreservation of spermatogonia and oogonia in the critically endangered cyprinid honmoroko Gnathopogon caerulescens using slow-cooling (freezing) and rapid-cooling (vitrification) methods. Initially, we examined the testicular cell toxicities and glass-forming properties of the five cryoprotectants: ethylene glycol (EG), glycerol (GC), dimethyl sulfoxide (DMSO), propylene glycol (PG), and 1,3-butylene glycol (BG), and we determined cryoprotectant concentrations that are suitable for freezing and vitrification solutions, respectively. Subsequently, we prepared the freezing solutions of EG, GC, DMSO, PG, and BG at 3, 2, 3, 2, and 2 M and vitrification solutions at 7, 6, 5, 5, and 4 M, respectively. Following the cryopreservation of the testicular cells mainly containing early-stage spermatogenic cells (e.g., spermatogonia and primary spermatocytes), cells were cultured for 7 days and immunochemically stained against germ cell marker protein Vasa. Areas occupied by Vasa-positive cells indicated that vitrification led to better survival of germ cells than the freezing method, and the best result was obtained with 5 M PG, about 50% recovery of germ cells following vitrification. In the case of ovarian cells containing oogonia and stage I, II, and IIIa oocytes, vitrification with 5 M DMSO resulted the best survival of oogonia, with equivalent cell numbers to those cultured without vitrification. The present data suggest that male and female gonial cells of the endangered species G. caerulescens can be efficiently cryopreserved using suitable cryoprotectants for spermatogonia and oogonia, respectively.


Subject(s)
Cryopreservation/methods , Cyprinidae/physiology , Oocytes/physiology , Spermatogonia/physiology , Vitrification , Animals , Cryoprotective Agents/chemistry , Endangered Species , Female , Freezing , Male , Oocytes/cytology , Spermatogonia/cytology
3.
Sci Rep ; 7: 42852, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28211534

ABSTRACT

Many endemic fish species are threatened with extinction. Conservation strategies and the restoration of endemic fish after extinction must therefore be investigated. Although sperm cryopreservation is indispensable for the conservation of endangered fishes, the limited number of mature fish and limited availability (volume and period) of sperm from small endemic fish hinders the optimization and practical use of this material. In this report, we demonstrate the in vitro differentiation of fertile sperm from cryopreserved spermatogonia of juveniles of the endangered small cyprinid honmoroko (Gnathopogon caerulescens), which is endemic to Lake Biwa in Japan. The entire process of spermatogenesis was recapitulated in vitro using cryopreserved spermatogonia of non-spawning adult and juvenile fish. The differentiation of sperm from spermatogonia was captured as a time-lapse video and confirmed by 5-ethynyl-2'-deoxyuridine (EdU) incorporation into sperm. Fertility was demonstrated by artificial insemination. These results suggest that the combination of cryopreservation of spermatogonia and in vitro sperm differentiation will provide a new and promising strategy for the preservation of paternal genetic materials.


Subject(s)
Conservation of Natural Resources/methods , Cyprinidae/physiology , Spermatogonia/cytology , Spermatozoa/cytology , Animals , Cell Differentiation , Cryopreservation , Deoxyuridine/analogs & derivatives , Deoxyuridine/metabolism , Endangered Species , Female , Fertility , In Vitro Techniques , Japan , Male , Spermatogonia/metabolism , Spermatozoa/metabolism , Time-Lapse Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...