Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Funct Biomater ; 15(4)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38667551

ABSTRACT

The human mandible's cancellous bone, which is characterized by its unique porosity and directional sensitivity to external forces, is crucial for sustaining biting stress. Traditional computer- aided design (CAD) models fail to fully represent the bone's anisotropic structure and thus depend on simple isotropic assumptions. For our research, we use the latest versions of nTOP 4.17.3 and Creo Parametric 8.0 software to make biomimetic Voronoi lattice models that accurately reflect the complex geometry and mechanical properties of trabecular bone. The porosity of human cancellous bone is accurately modeled in this work using biomimetic Voronoi lattice models. The porosities range from 70% to 95%, which can be achieved by changing the pore sizes to 1.0 mm, 1.5 mm, 2.0 mm, and 2.5 mm. Finite element analysis (FEA) was used to examine the displacements, stresses, and strains acting on dental implants with a buttress thread, abutment, retaining screw, and biting load surface. The results show that the Voronoi model accurately depicts the complex anatomy of the trabecular bone in the human jaw, compared to standard solid block models. The ideal pore size for biomimetic Voronoi lattice trabecular bone models is 2 mm, taking in to account both the von Mises stress distribution over the dental implant, screw retention, cortical bone, cancellous bone, and micromotions. This pore size displayed balanced performance by successfully matching natural bone's mechanical characteristics. Advanced FEA improves the biomechanical understanding of how bones and implants interact by creating more accurate models of biological problems and dynamic loading situations. This makes biomechanical engineering better.

2.
Sensors (Basel) ; 24(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38257544

ABSTRACT

Sign language is designed as a natural communication method to convey messages among the deaf community. In the study of sign language recognition through wearable sensors, the data sources are limited, and the data acquisition process is complex. This research aims to collect an American sign language dataset with a wearable inertial motion capture system and realize the recognition and end-to-end translation of sign language sentences with deep learning models. In this work, a dataset consisting of 300 commonly used sentences is gathered from 3 volunteers. In the design of the recognition network, the model mainly consists of three layers: convolutional neural network, bi-directional long short-term memory, and connectionist temporal classification. The model achieves accuracy rates of 99.07% in word-level evaluation and 97.34% in sentence-level evaluation. In the design of the translation network, the encoder-decoder structured model is mainly based on long short-term memory with global attention. The word error rate of end-to-end translation is 16.63%. The proposed method has the potential to recognize more sign language sentences with reliable inertial data from the device.


Subject(s)
Sign Language , Wearable Electronic Devices , Humans , United States , Motion Capture , Neurons , Perception
3.
Micromachines (Basel) ; 14(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37630077

ABSTRACT

Pure titanium is limited to be used in biomedical applications due to its lower mechanical strength compared to its alloy counterpart. To enhance its properties and improve medical implants feasibility, advancements in titanium processing technologies are necessary. One such technique is equal-channel angular pressing (ECAP) for its severe plastic deformation (SPD). This study aims to surface modify commercially pure titanium using micro-arc oxidation (MAO) or plasma electrolytic oxidation (PEO) technologies, and mineral solutions containing Ca and P. The composition, metallography, and shape of the changed surface were characterized using X-ray diffraction (XRD), digital optical microscopy (OM), and scanning electron microscope (SEM), respectively. A microhardness test is conducted to assess each sample's mechanical strength. The weight % of Ca and P in the coating was determined using energy dispersive spectroscopy (EDS), and the corrosion resistance was evaluated through potentiodynamic measurement. The behavior of human dental pulp cell and periodontal cell behavior was also studied through a biomedical experiment over a period of 1-, 3-, and 7-days using culture medium, and the cell death and viability can be inferred with the help of enzyme-linked immunosorbent assay (ELISA) since it can detect proteins or biomarkers secreted by cells undergoing apoptosis or necrosis. This study shows that the mechanical grain refinement method and surface modification might improve the mechanical and biomechanical properties of commercially pure (CP) titanium. According to the results of the corrosion loss measurements, 2PassMAO had the lowest corrosion rate, which is determined to be 0.495 mmpy. The electrode potentials for the 1-pass and 2-pass coated samples are 1.44 V and 1.47 V, respectively. This suggests that the coating is highly effective in reducing the corrosion rate of the metallic CP Ti sample. Changes in the grain size and the presence of a high number of grain boundaries have a significant impact on the corrosion resistance of CP Ti. For ECAPED and surface-modified titanium samples in a 3.6% NaCl electrolyte solution, electrochemical impedance spectroscopy (EIS) properties are similar to Nyquist and Bode plot fitting. In light of ISO 10993-5 guidelines for assessing in vitro cytotoxicity, this study contributes valuable insights into pulp and periodontal cell behavior, focusing specifically on material cytotoxicity, a critical factor determined by a 30% decrease in cell viability.

4.
Bioengineering (Basel) ; 10(4)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37106623

ABSTRACT

Based on the principles of neuromechanics, human arm movements result from the dynamic interaction between the nervous, muscular, and skeletal systems. To develop an effective neural feedback controller for neuro-rehabilitation training, it is important to consider both the effects of muscles and skeletons. In this study, we designed a neuromechanics-based neural feedback controller for arm reaching movements. To achieve this, we first constructed a musculoskeletal arm model based on the actual biomechanical structure of the human arm. Subsequently, a hybrid neural feedback controller was developed that mimics the multifunctional areas of the human arm. The performance of this controller was then validated through numerical simulation experiments. The simulation results demonstrated a bell-shaped movement trajectory, consistent with the natural motion of human arm movements. Furthermore, the experiment testing the tracking ability of the controller revealed real-time errors within one millimeter, with the tensile force generated by the controller's muscles being stable and maintained at a low value, thereby avoiding the issue of muscle strain that can occur due to excessive excitation during the neurorehabilitation process.

7.
Front Neurosci ; 16: 962141, 2022.
Article in English | MEDLINE | ID: mdl-35937881

ABSTRACT

A sign language translation system can break the communication barrier between hearing-impaired people and others. In this paper, a novel American sign language (ASL) translation method based on wearable sensors was proposed. We leveraged inertial sensors to capture signs and surface electromyography (EMG) sensors to detect facial expressions. We applied a convolutional neural network (CNN) to extract features from input signals. Then, long short-term memory (LSTM) and transformer models were exploited to achieve end-to-end translation from input signals to text sentences. We evaluated two models on 40 ASL sentences strictly following the rules of grammar. Word error rate (WER) and sentence error rate (SER) are utilized as the evaluation standard. The LSTM model can translate sentences in the testing dataset with a 7.74% WER and 9.17% SER. The transformer model performs much better by achieving a 4.22% WER and 4.72% SER. The encouraging results indicate that both models are suitable for sign language translation with high accuracy. With complete motion capture sensors and facial expression recognition methods, the sign language translation system has the potential to recognize more sentences.

8.
Med Eng Phys ; 105: 103823, 2022 07.
Article in English | MEDLINE | ID: mdl-35781387

ABSTRACT

This study aims to describe the geometrical features of single trabeculae and their network to explain cancellous stiffness as a representative mechanical function from a strength of materials perspective. Compression tests were performed on cancellous bone specimens dissected from a bovine femur as 5-mm cubes to measure cancellous stiffness. The microarchitecture was determined by microfocus X-ray computed tomography, and conventional morphological indicators were analyzed. The length, orientation, and bifurcation characteristics of each trabecula were analyzed by skeletonizing and linearizing the cancellous bone volume. Multiple regression analyses revealed a significant contribution made to cancellous stiffness by the compressive shape factor of the stiffness of single trabeculae, the trabecular orientation, and the bifurcation count, which evaluated the mean number of connected trabeculae at bifurcation points. Bifurcation count made the most significant contribution to cancellous stiffness. The combination of these geometrical indicators expressed the cancellous stiffness (R2 = 0.85), which indicated as high accuracy as that explained by bone volume fraction, in specific bones that were not affected by bone disease or aging. The present study demonstrated mechanically important geometrical features of the microarchitecture and indicated their complex contributions to cancellous stiffness underlying the contribution of bone volume fraction.


Subject(s)
Bone and Bones , Femur , Animals , Cattle , Femoral Artery , Femur/diagnostic imaging , Lower Extremity , Tomography, X-Ray Computed
9.
J Bone Miner Metab ; 40(4): 613-622, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35333984

ABSTRACT

INTRODUCTION: Bisphosphonates (BPs) have been shown to reduce the incidence of vertebral fractures during the first year or two of glucocorticoid (GC) treatments and are therefore recommended as a first-line treatment for GC-induced osteoporosis (GIO). However, there are theoretical concerns about the long-term use of BPs in low-turnover osteoporosis caused by chronic GC therapy. MATERIALS AND METHODS: We analyzed the trabecular microarchitecture, bone metabolism, and material strength of iliac crest bone biopsy samples from 10 female patients with rheumatoid arthritis who received an average of 6.7 years of BP therapy for GIO (GIOBP group), compared with those of 10 age- and bone mineral density (BMD)-matched non-rheumatoid arthritis postmenopausal women (reference group). RESULTS: Patients in the GIOBP group had a significantly greater fracture severity index, as calculated from the number and the extent of vertebral fractures compared with the reference patients. Micro-computed tomography analysis showed that the degree of mineralization and trabecular microarchitecture were significantly lower in the GIOBP group than in the reference patients. Patients in the GIOBP group exhibited lower bone contact stiffness, determined by micro-indentation testing, than in the reference group. The contact stiffness of the bone was negatively correlated with the fracture severity index and the daily prednisolone dosage. Immunohistochemistry and serum bone turnover markers showed decreased osteoclastic activity, impaired mineralization, and an increased fraction of empty lacunae in the GIOBP group. CONCLUSION: Our findings indicate that patients receiving long-term BP for GIO are still at high risk for fragility fractures because of poor bone quality.


Subject(s)
Arthritis, Rheumatoid , Fractures, Bone , Osteoporosis , Spinal Fractures , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/drug therapy , Biopsy/adverse effects , Bone Density , Diphosphonates/adverse effects , Female , Fractures, Bone/etiology , Glucocorticoids/adverse effects , Humans , Osteoporosis/chemically induced , Osteoporosis/complications , Osteoporosis/drug therapy , Spinal Fractures/chemically induced , Spinal Fractures/complications , Spinal Fractures/drug therapy , X-Ray Microtomography/adverse effects
10.
Int J Mol Sci ; 22(21)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34768759

ABSTRACT

Concentrated growth factor (CGF) is 100% blood-derived, cross-linked fibrin glue with platelets and growth factors. Human CGF clot is transformed into membrane by a compression device, which has been widely used clinically. However, the mechanical properties of the CGF membranes have not been well characterized. The aims of this study were to measure the tensile strength of human CGF membrane and observe its behavior as a scaffold of BMP-2 in ectopic site over the skull. The tensile test of the full length was performed at the speed of 2mm/min. The CGF membrane (5 × 5 × 2 mm3) or the CGF/BMP-2 (1.0 µg) membrane was grafted onto the skull periosteum of nude mice (5-week-old, male), and harvested at 14 days after the graft. The appearance and size of the CGF membranes were almost same for 7 days by soaking at 4 °C in saline. The average values of the tensile strength at 0 day and 7 days were 0.24 MPa and 0.26 MPa, respectively. No significant differences of both the tensile strength and the elastic modulus were found among 0, 1, 3, and 7 days. Supra-periosteal bone induction was found at 14 days in the CGF/BMP-2, while the CGF alone did not induce bone. These results demonstrated that human CGF membrane could become a short-term, sticky fibrin scaffold for BMP-2, and might be preserved as auto-membranes for wound protection after the surgery.


Subject(s)
Bone Morphogenetic Protein 2/pharmacology , Intercellular Signaling Peptides and Proteins/pharmacology , Intercellular Signaling Peptides and Proteins/therapeutic use , Periosteum/drug effects , Skull/drug effects , Adult , Animals , Bone Morphogenetic Protein 2/therapeutic use , Bone Transplantation , Elastic Modulus , Fibrin Tissue Adhesive/chemistry , Fibrin Tissue Adhesive/pharmacology , Fibrin Tissue Adhesive/therapeutic use , Healthy Volunteers , Humans , Intercellular Signaling Peptides and Proteins/isolation & purification , Male , Membranes/chemistry , Membranes/metabolism , Mice, Nude , Periosteum/cytology , Skull/cytology , Tensile Strength , Wound Healing/drug effects
11.
Materials (Basel) ; 15(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35009252

ABSTRACT

Vertical augmentation is one of the most challenging techniques in bone engineering. Several parameters, such mechano-chemical characteristics, are important to optimize vertical bone regeneration using biomaterials. The aims of this study were to chemically characterize human dentin blocks (calcified demineralized dentin matrix: CDM, partially demineralized dentin matrix: PDDM and completely demineralized dentin matrix: CDDM) (2 × 2 × 1 mm3) chemically and evaluate the behavior of PDDM blocks on non-scratched or scratched skulls without periosteum of adult rats (10-12 months old, female) as a vertical augmentation model. The dissolved efficiency of CDM showed 32.3% after ultrasonic demineralization in 1.0 L of 2% HNO3 for 30 min. The 30 min-demineralized dentin was named PDDM. The SEM images of PDDM showed the opening of dentinal tubes, nano-microcracks and the smooth surface. In the collagenase digestion test, the weight-decreasing rates of CDM, PDDM and CDDM were 9.2%, 25.5% and 78.3% at 12 weeks, respectively. CDM inhibited the collagenase digestion, compared with PDDM and CDDM. In the PDDM onlay graft on an ultrasonically scratched skull, the bone marrow-space opening from original bone was found in the bony bridge formation between the human PDDM block and dense skull of adult senior rats at 4 and 8 weeks. On the other hand, in the cases of the marrow-space closing in both non-scratched skulls and scratched skulls, the bony bridge was not formed. The results indicated that the ultrasonic scratching into the compact parietal bone might contribute greatly to the marrow-space opening from skull and the supply of marrow cells, and then bony bridge formation could occur in the vertical augmentation model without a periosteum.

12.
J Biomech ; 104: 109738, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32188573

ABSTRACT

Biomimetic mineralization is a promising technique in biomedical applications. To understand the mechanical behavior of biomimetically mineralized collagen material (BMC), we examined the composition and structure of the mineral deposition in BMCs mineralized by the polymer-induced liquid precursor (PILP) process and applied wide angle x-ray scattering (WAXS) with in situ tensile testing to investigate the mineral-to-tissue co-deformation in the material. We found that the PILP process is able to achieve good biomimetic mineralization in bulk collagen matrix. Compositionally, the mineral deposition showed high crystallinity with no carbonation. However, the morphology of extrafibrillar mineral deposition and the preferential crystal orientation were different from natural bone. Further, the Young's modulus and mineral-to-tissue co-deformation ratio of the BMC were significantly lower than both natural bone and partially demineralized bone with similar mineral volume fraction. It was concluded that while biomimetic mineralization can achieve good mineral deposition volume in the BMC, the mechanical behavior of the material was different from natural bone.


Subject(s)
Collagen , Polymers , Biomimetics , Bone and Bones , Minerals
13.
Clin Biomech (Bristol, Avon) ; 65: 13-18, 2019 05.
Article in English | MEDLINE | ID: mdl-30928786

ABSTRACT

BACKGROUND: Since bone mass is not the only determinant of bone strength, there has been increasing interest in incorporating the bone quality into fracture risk assessments. We aimed to examine whether the magnetic resonance imaging (MRI) T1 or T2 mapping value could provide information that is complementary to bone mineral density for more accurate prediction of cancellous bone strength. METHODS: Four postmenopausal women with hip osteoarthritis underwent 3.0-T MRI to acquire the T1 and T2 values of the cancellous bone of the femoral head before total hip arthroplasty. After the surgery, the excised femoral head was portioned into multiple cubic cancellous bone specimens with side of 5 mm, and the specimens were then subjected to microcomputed tomography followed by biomechanical testing. FINDINGS: The T1 value positively correlated with the yield stress (σy) and collapsed stress (σc). The T2 value did not correlate with the yield stress, but it correlated with the collapsed stress and strength reduction ratio (σc/σy), which reflects the progressive re-fracture risk. Partial correlation coefficient analyses, after adjusting for the bone mineral density, showed a statistically significant correlation between T1 value and yield stress. The use of multiple coefficients of determination by least squares analysis emphasizes the superiority of combining the bone mineral density and the MRI mapping values in predicting the cancellous bone strength compared with the bone mineral density-based prediction alone. INTERPRETATION: The MRI T1 and T2 values predict cancellous bone strength including the change in bone quality.


Subject(s)
Bone Density , Femur Head/diagnostic imaging , Magnetic Resonance Imaging , Osteoarthritis, Hip/diagnostic imaging , Osteoporosis, Postmenopausal/diagnostic imaging , Aged , Arthroplasty, Replacement, Hip , Biomechanical Phenomena , Cancellous Bone/diagnostic imaging , Female , Humans , Image Processing, Computer-Assisted/methods , Middle Aged , Postmenopause , X-Ray Microtomography
14.
EBioMedicine ; 37: 521-534, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30389504

ABSTRACT

BACKGROUND: The current surgical procedure of choice for lumbar intervertebral disc (IVD) herniation is discectomy. However, defects within IVD produced upon discectomy may impair tissue healing and predispose patients to subsequent IVD degeneration. This study aimed to investigate whether the use of an acellular bioresorbable ultra-purified alginate (UPAL) gel implantation system is safe and effective as a reparative therapeutic strategy after lumbar discectomy. METHODS: Human IVD cells were cultured in a three-dimensional system in UPAL gel. In addition, lumbar spines of sheep were used for mechanical analysis. Finally, the gel was implanted into IVD after discectomy in rabbits and sheep in vivo. FINDINGS: The UPAL gel was biocompatible with human IVD cells and promoted extracellular matrix production after discectomy, demonstrating sufficient biomechanical characteristics without material protrusion. INTERPRETATION: The present results indicate the safety and efficacy of UPAL gels in a large animal model and suggest that these gels represent a novel therapeutic strategy after discectomy in cases of lumbar IVD herniation. FUND: Grant-in-Aid for the Ministry of Education, Culture, Sports, Science, and Technology of Japan, Japan Agency for Medical Research and Development, and the Mochida Pharmaceutical Co., Ltd.


Subject(s)
Alginates/pharmacology , Extracellular Matrix/metabolism , Intervertebral Disc Degeneration , Animals , Extracellular Matrix/pathology , Gels , Humans , Intervertebral Disc/metabolism , Intervertebral Disc/pathology , Intervertebral Disc/surgery , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/surgery , Male , Rabbits , Sheep
15.
PeerJ ; 4: e1562, 2016.
Article in English | MEDLINE | ID: mdl-26855856

ABSTRACT

The incidence of osteoporotic fractures was estimated as nine million worldwide in 2000, with particular occurrence at the proximity of joints rich in cancellous bone. Although most of these fractures spontaneously heal, some fractures progressively collapse during the early post-fracture period. Prediction of bone fragility during progressive collapse following initial fracture is clinically important. However, the mechanism of collapse, especially the gradual loss of the height in the cancellous bone region, is not clearly proved. The strength of cancellous bone after yield stress is difficult to predict since structural and mechanical strength cannot be determined a priori. The purpose of this study was to identify whether the baseline structure and volume of cancellous bone contributed to the change in cancellous bone strength under cyclic loading. A total of fifteen cubic cancellous bone specimens were obtained from two 2-year-old bovines and divided into three groups by collection regions: femoral head, neck, and proximal metaphysis. Structural indices of each 5-mm cubic specimen were determined using micro-computed tomography. Specimens were then subjected to five cycles of uniaxial compressive loading at 0.05 mm/min with initial 20 N loading, 0.3 mm displacement, and then unloading to 0.2 mm with 0.1 mm displacement for five successive cycles. Elastic modulus and yield stress of cancellous bone decreased exponentially during five loading cycles. The decrease ratio of yield stress from baseline to fifth cycle was strongly correlated with bone volume fraction (BV/TV, r = 0.96, p < 0.01) and structural model index (SMI, r = - 0.81, p < 0.01). The decrease ratio of elastic modulus from baseline to fifth cycle was also correlated with BV/TV (r = 0.80, p < 0.01) and SMI (r = - 0.78, p < 0.01). These data indicate that structural deterioration of cancellous bone is associated with bone strength after yield stress. This study suggests that baseline cancellous bone structure estimated from adjacent non-fractured bone contributes to the cancellous bone strength during collapse.

16.
Tissue Eng Part C Methods ; 21(12): 1263-73, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26414601

ABSTRACT

Cartilage injuries are a common health problem resulting in the loss of daily activities. Bone marrow stimulation technique, one of the surgical techniques for the cartilage injuries, is characterized by technical simplicity and less invasiveness. However, it has been shown to result in fibrous or fibrocartilaginous repair with inferior long-term results. This study focused on using ultrapurified alginate gel (UPAL gel) as an adjuvant scaffold in combination with a bone marrow stimulation technique. The objective of this study was to assess the efficacy of a bone marrow stimulation technique augmented by UPAL gel in a rabbit osteochondral defect model. To achieve this goal, three experimental groups were prepared as follows: defects without intervention, defects treated with a bone marrow stimulation technique, and defects treated with a bone marrow stimulation technique augmented by UPAL gel. The macroscopic and histological findings of the defects augmented by UPAL gel improved significantly more than those of the others at 16 weeks postoperatively. The combination technique elicited hyaline-like cartilage repair, unlike bone marrow stimulation technique alone. This combination procedure has the potential of improving clinical outcomes after use of a bone marrow stimulation technique for articular cartilage injuries.


Subject(s)
Alginates/pharmacology , Bone Marrow/metabolism , Cartilage, Articular/injuries , Cartilage, Articular/metabolism , Regeneration/drug effects , Tissue Scaffolds , Animals , Bone Marrow/pathology , Cartilage, Articular/pathology , Disease Models, Animal , Gels/pharmacology , Glucuronic Acid/pharmacology , Hexuronic Acids/pharmacology , Rabbits
17.
J Biomed Mater Res A ; 103(11): 3441-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25904112

ABSTRACT

OBJECTIVE: This study aimed to elucidate the therapeutic effects of intra-articular administration of ultra-purified low endotoxin alginate (UPLE-alginate) on osteoarthritis (OA) using a canine anterior cruciate ligament transection (ACLT) model. DESIGN: We used 20 beagle dogs. ACLT was performed on the left knee of each dog and a sham operation was performed on the right knee as a control. All animals were randomly divided into the control (saline) and therapeutic (UPLE-alginate) groups. Animals in the control and therapeutic groups received weekly injections with 0.7 mL normal saline or 0.7 mL 0.5% UPLE-alginate, respectively, from 0 to 3 weeks after ACLT or sham operation. At 9 weeks after ACLT, the knee joints of all animals were observed using arthroscopy. All animals were euthanized at 14 weeks after ACLT and evaluated using morphologic assessment, histologic assessment, and biomechanical testing. RESULTS: Arthroscopic findings showed intact cartilage surface in both groups. Morphologic findings in the therapeutic group showed milder degeneration compared with those of the control group, but there were no significant differences between groups. Histologic scores of the medial femoral condyle (MFC) and lateral femoral condyle (LFC) were better in the therapeutic group than the control group (MFC: p = 0.009, LFC: p = 0.009). Joint lubrication did not differ significantly between groups. CONCLUSION: Intra-articular administration of UPLE-alginate in the early stage of OA slowed disease progression in canines. UPLE-alginate may have potential as a therapeutic agent for OA patients and reduce the number of patients who need to undergo total joint arthroplasty.


Subject(s)
Alginates/administration & dosage , Alginates/therapeutic use , Endotoxins/administration & dosage , Endotoxins/therapeutic use , Osteoarthritis/drug therapy , Alginates/pharmacology , Animals , Anterior Cruciate Ligament/diagnostic imaging , Anterior Cruciate Ligament/surgery , Arthroscopy , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Disease Models, Animal , Dogs , Endotoxins/pharmacology , Femur/drug effects , Femur/surgery , Friction , Glucuronic Acid/administration & dosage , Glucuronic Acid/pharmacology , Glucuronic Acid/therapeutic use , Hexuronic Acids/administration & dosage , Hexuronic Acids/pharmacology , Hexuronic Acids/therapeutic use , Injections, Intra-Articular , Joints/drug effects , Lubrication , Osteoarthritis/pathology , Osteoarthritis/surgery , Radiography
18.
Bone ; 64: 95-101, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24731926

ABSTRACT

Teriparatide (PTH1-34) promotes skeletal repair and increases bone mass. Vitamin K is involved in bone mineralization as a coenzyme of γ-carboxylase for Gla proteins, and therefore vitamin K insufficiency caused by malnutrition or therapeutic intake of the vitamin K antagonist warfarin could affect the efficacy of PTH1-34 therapy for bone repair. In the present study, we investigated whether vitamin K influences the efficacy of PTH1-34 therapy for bone repair in a rat osteotomy model. Female 12-week-old Sprague-Dawley rats were subjected to a closed midshaft osteotomy of the femur and randomized into four groups (n=10 per group): vehicle, PTH1-34 (daily 30 µg/kg/day subcutaneous injection)+solvent (orally, three times a week), PTH1-34+warfarin (0.4 mg/kg/day orally, three times a week), and PTH1-34+vitamin K2 (menatetrenone, 30 mg/kg/day orally, three times a week). Serum γ-carboxylated and uncarboxylated osteocalcin (Gla-OC and Glu-OC) levels and radiographic healing were monitored every 2 weeks. Skeletal repair was assessed by micro-computed tomography, mechanical testing, and histology at 8weeks after surgery. PTH1-34 amplified the osteotomy-induced increase in Gla-OC and improved the mechanical properties as well as the volumetric bone mineral tissue density of the fracture callus. Concurrent use of warfarin decreased the response to PTH1-34 therapy in terms of mechanical recovery, probably by impairing mineralization due to the lack of Gla-OC. Although the effects of combination therapy with PTH1-34 and vitamin K2 on bone repair did not significantly exceed those of PTH1-34 monotherapy in rats fed sufficient dietary vitamin K, postoperative Gla-OC levels were correlated with the mechanical properties of the osteotomized femur in PTH1-34-treated rats regardless of the use of warfarin or vitamin K2. These findings suggest the importance of vitamin K dependent γ-carboxylation of OC for realizing the full effects of PTH1-34 on skeletal repair.


Subject(s)
Bone Development , Carboxylic Acids/metabolism , Osteocalcin/metabolism , Teriparatide/pharmacology , Vitamin K/pharmacology , Animals , Female , Rats , Rats, Sprague-Dawley
19.
J Mech Behav Biomed Mater ; 10: 176-82, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22520429

ABSTRACT

Tooth enamel is the hardest material in the human body, and it is mainly composed of hydroxyapatite (HAp)-like mineral particles. As HAp has a hexagonal crystal structure, X-ray diffraction methods can be used to analyze the crystal structure of HAp in teeth. Here, the X-ray diffraction method was applied to the surface of tooth enamel to measure the orientation and strain of the HAp crystals. The c-axis of the hexagonal crystal structure of HAp was oriented to the surface perpendicular to the tooth enamel covering the tooth surface. Thus, the strain of HAp at the surface of teeth was measured by X-ray diffraction from the (004) lattice planes aligned along the c-axis. The X-ray strain measurements were conducted on tooth specimens with intact surfaces under loading. Highly accurate strain measurements of the surface of tooth specimens were performed by precise positioning of the X-ray irradiation area during loading. The strains of the (004) lattice plane were measured at several positions on the surface of the specimens under compression along the tooth axis. The strains were obtained as tensile strains at the labial side of incisor tooth specimens. In posterior teeth, the strains were different at different measurement positions, varying from tensile to compressive types.


Subject(s)
Materials Testing , Minerals/chemistry , Stress, Mechanical , Tooth/chemistry , Biomechanical Phenomena , Dental Enamel/chemistry , Durapatite/chemistry , Humans , Surface Properties , X-Ray Diffraction
20.
Cartilage ; 3(1): 70-8, 2012 Jan.
Article in English | MEDLINE | ID: mdl-26069620

ABSTRACT

OBJECTIVE: We have developed an ultrapurified low endotoxin alginate (UPLE alginate), which can drastically reduce endotoxin levels. Our purposes were to examine the effects of UPLE alginate administration on osteoarthritis (OA) progression and to determine the adequate molecular weight of the UPLE alginate for therapeutic effects. DESIGN: To induce knee OA, 35 Japanese White rabbits underwent anterior cruciate ligament transection. Intra-articular injections of 0.3 mL solution of each material were started at 4 weeks postoperatively for a total of 5 weekly injections. Seventy knees were divided into the following groups: AL430 (430 kDa molecular weight UPLE alginate), AL1000 (1,000 kDa), AL1700 (1,700 kDa), HA (hyaluronan), and NS (normal saline). At 9 weeks postoperatively, all knees were assessed macroscopically, histologically, and mechanically. RESULTS: Macroscopically, the UPLE alginate groups exhibited milder cartilage degradation compared to that of the NS and HA groups. Histological findings of the UPLE alginate groups showed an obvious reduction in the severity of OA. The histological scores of Kikuchi et al. were superior in the alginate treatment groups compared to the NS group. The friction coefficient of the AL1000 group was significantly lower than that of the NS and HA groups. CONCLUSION: This study indicates that our UPLE alginates, especially AL1000, have promising potential as an effective agent in preventing OA progression.

SELECTION OF CITATIONS
SEARCH DETAIL
...