Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Eur Heart J ; 45(18): 1613-1630, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38596850

ABSTRACT

BACKGROUND AND AIMS: Increasing data suggest that stress-related neural activity (SNA) is associated with subsequent major adverse cardiovascular events (MACE) and may represent a therapeutic target. Current evidence is exclusively based on populations from the U.S. and Asia where limited information about cardiovascular disease risk was available. This study sought to investigate whether SNA imaging has clinical value in a well-characterized cohort of cardiovascular patients in Europe. METHODS: In this single-centre study, a total of 963 patients (mean age 58.4 ± 16.1 years, 40.7% female) with known cardiovascular status, ranging from 'at-risk' to manifest disease, and without active cancer underwent 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography between 1 January 2005 and 31 August 2019. Stress-related neural activity was assessed with validated methods and relations between SNA and MACE (non-fatal stroke, non-fatal myocardial infarction, coronary revascularization, and cardiovascular death) or all-cause mortality by time-to-event analysis. RESULTS: Over a maximum follow-up of 17 years, 118 individuals (12.3%) experienced MACE, and 270 (28.0%) died. In univariate analyses, SNA significantly correlated with an increased risk of MACE (sub-distribution hazard ratio 1.52, 95% CI 1.05-2.19; P = .026) or death (hazard ratio 2.49, 95% CI 1.96-3.17; P < .001). In multivariable analyses, the association between SNA imaging and MACE was lost when details of the cardiovascular status were added to the models. Conversely, the relationship between SNA imaging and all-cause mortality persisted after multivariable adjustments. CONCLUSIONS: In a European patient cohort where cardiovascular status is known, SNA imaging is a robust and independent predictor of all-cause mortality, but its prognostic value for MACE is less evident. Further studies should define specific patient populations that might profit from SNA imaging.


Subject(s)
Positron Emission Tomography Computed Tomography , Humans , Female , Male , Middle Aged , Prognosis , Positron Emission Tomography Computed Tomography/methods , Aged , Europe/epidemiology , Cardiovascular Diseases/mortality , Brain/diagnostic imaging , Fluorodeoxyglucose F18 , Radiopharmaceuticals , Heart/diagnostic imaging
2.
Transfus Med Hemother ; 51(1): 22-31, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38314243

ABSTRACT

Background: Von Willebrand factor (vWF) is an important part of blood coagulation since it binds platelets to each other and to endothelial cells. In traumatic and surgical haemorrhage, both blood cells and plasmatic factors are consumed, leading to consumption coagulopathy and fluid resuscitation. This often results in large amounts of crystalloids and blood products being infused. Additional administration of vWF complex and platelets might mitigate this problem. We hypothesize that administration of vWF concentrate additionally to platelet concentrates reduces blood loss and the amount of blood products (platelets, red blood cells [RBC], fresh frozen plasma [FFP]) administered. Methods: We conducted a monocentric 6-year retrospective data analysis of cardiac surgery patients. Included were all patients receiving platelet concentrates within 48 h postoperatively. Patients who additionally received vWF concentrates were allocated to the intervention group and all others to the control group. Groups were compared in mixed regression models correcting for known confounders, based on nearest neighbour propensity score matching. Primary endpoints were loss of blood (day one and two) and amount of needed blood products on day one and two (platelets, RBC, FFP). Secondary endpoints were intensive care unit (ICU) and in-hospital length of stay, ICU and in-hospital mortality, and absolute difference of platelet counts before and after treatment. Results: Of 497 patients analysed, 168 (34%) received vWF concentrates. 121 patients in both groups were considered for nearest neighbour matching. Patients receiving additional vWF were more likely to receive more blood products (RBC, FFP, platelets) in the first 24 h after surgery and had around 200 mL more blood loss at the same time. Conclusion: In this retrospective analysis, no benefit in additional administration of vWF to platelet concentrates on perioperative blood loss, transfusion requirement (platelets, RBC, FFP), length of stay, and mortality could be found. These findings should be verified in a prospective randomized controlled clinical trial (www.clinicaltrials.gov identifier NCT04555785).

3.
Euro Surveill ; 29(2)2024 Jan.
Article in English | MEDLINE | ID: mdl-38214079

ABSTRACT

BackgroundWomen are overrepresented among individuals with post-acute sequelae of SARS-CoV-2 infection (PASC). Biological (sex) as well as sociocultural (gender) differences between women and men might account for this imbalance, yet their impact on PASC is unknown.AimWe assessed the impact of sex and gender on PASC in a Swiss population.MethodOur multicentre prospective cohort study included 2,856 (46% women, mean age 44.2 ± 16.8 years) outpatients and hospitalised patients with PCR-confirmed SARS-CoV-2 infection.ResultsAmong those who remained outpatients during their first infection, women reported persisting symptoms more often than men (40.5% vs 25.5% of men; p < 0.001). This sex difference was absent in hospitalised patients. In a crude analysis, both female biological sex (RR = 1.59; 95% CI: 1.41-1.79; p < 0.001) and a score summarising gendered sociocultural variables (RR = 1.05; 95% CI: 1.03-1.07; p < 0.001) were significantly associated with PASC. Following multivariable adjustment, biological female sex (RR = 0.96; 95% CI: 0.74-1.25; p = 0.763) was outperformed by feminine gender-related factors such as a higher stress level (RR = 1.04; 95% CI: 1.01-1.06; p = 0.003), lower education (RR = 1.16; 95% CI: 1.03-1.30; p = 0.011), being female and living alone (RR = 1.91; 95% CI: 1.29-2.83; p = 0.001) or being male and earning the highest income in the household (RR = 0.76; 95% CI: 0.60-0.97; p = 0.030).ConclusionSpecific sociocultural parameters that differ in prevalence between women and men, or imply a unique risk for women, are predictors of PASC and may explain, at least in part, the higher incidence of PASC in women. Once patients are hospitalised during acute infection, sex differences in PASC are no longer evident.


Subject(s)
COVID-19 , Female , Humans , Male , Adult , Middle Aged , COVID-19/epidemiology , Post-Acute COVID-19 Syndrome , Switzerland/epidemiology , Prospective Studies , SARS-CoV-2 , Disease Progression
4.
J Clin Med ; 12(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37109261

ABSTRACT

Background: Atrial fibrillation (AF) has been described as a common cardiovascular manifestation in patients suffering from coronavirus disease 2019 (COVID-19) and has been suggested to be a potential risk factor for a poor clinical outcome. Methods: In this observational study, all patients hospitalized due to COVID-19 in 2020 in the Cantonal Hospital of Baden were included. We assessed clinical characteristics, in-hospital outcomes as well as long-term outcomes with a mean follow-up time of 278 (±90) days. Results: Amongst 646 patients diagnosed with COVID-19 (59% male, median age: 70 (IQR: 59-80)) in 2020, a total of 177 (27.4%) patients were transferred to the intermediate/intensive care unit (IMC/ICU), and 76 (11.8%) were invasively ventilated during their hospitalization. Ninety patients (13.9%) died. A total of 116 patients (18%) showed AF on admission of which 34 (29%) had new-onset AF. Patients with COVID-19 and newly diagnosed AF were more likely to require invasive ventilation (OR: 3.5; p = 0.01) but did not encounter an increased in-hospital mortality. Moreover, AF neither increased long-term mortality nor the number of rehospitalizations during follow-up after adjusting for confounders. Conclusions: In patients suffering from COVID-19, the new-onset of AF on admission was associated with an increased risk of invasive ventilation and transfer to the IMC/ICU but did not affect in-hospital or long-term mortality.

5.
Crit Care ; 27(1): 14, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635740

ABSTRACT

BACKGROUND: Timely management of acute myocardial infarction (AMI) and acute stroke has undergone impressive progress during the last decade. However, it is currently unknown whether both sexes have profited equally from improved strategies. We sought to analyze sex-specific temporal trends in intensive care unit (ICU) admission and mortality in younger patients presenting with AMI or stroke in Switzerland. METHODS: Retrospective analysis of temporal trends in 16,954 younger patients aged 18 to ≤ 52 years with AMI or acute stroke admitted to Swiss ICUs between 01/2008 and 12/2019. RESULTS: Over a period of 12 years, ICU admissions for AMI decreased more in women than in men (- 6.4% in women versus - 4.5% in men, p < 0.001), while ICU mortality for AMI significantly increased in women (OR 1.2 [1.10-1.30], p = 0.032), but remained unchanged in men (OR 0.99 [0.94-1.03], p = 0.71). In stroke patients, ICU admission rates increased between 3.6 and 4.1% per year in both sexes, while ICU mortality tended to decrease only in women (OR 0.91 [0.85-0.95, p = 0.057], but remained essentially unaltered in men (OR 0.99 [0.94-1.03], p = 0.75). Interventions aimed at restoring tissue perfusion were more often performed in men with AMI, while no sex difference was noted in neurovascular interventions. CONCLUSION: Sex and gender disparities in disease management and outcomes persist in the era of modern interventional neurology and cardiology with opposite trends observed in younger stroke and AMI patients admitted to intensive care. Although our study has several limitations, our data suggest that management and selection criteria for ICU admission, particularly in younger women with AMI, should be carefully reassessed.


Subject(s)
Myocardial Infarction , Stroke , Male , Humans , Female , Retrospective Studies , Hospital Mortality , Myocardial Infarction/therapy , Stroke/therapy , Critical Care , Sex Factors
6.
Trials ; 24(1): 47, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36670471

ABSTRACT

INTRODUCTION: von Willebrand Factor (vWF) is a key protein mediating platelet adhesion on the surface of damaged endothelia. To the best of our knowledge, no trial exists that investigated the effect of platelet transfusion in combination with the administration of balanced vWF in severe blood loss, despite being widely used in clinical practice. The Basel Will-Plate study will investigate the impact of the timely administration of balanced vWF (1:1 vWF and FVIII) in addition to platelet transfusion on the need for blood and coagulation factor transfusion in patients admitted to the intensive care unit (ICU) who suffer from severe bleeding. The study hypothesis is based on the assumption that adding balanced vWF to platelets will reduce the overall need for transfusion of blood products compared to the transfusion of platelets alone. METHODS AND ANALYSIS: The Will-Plate study is an investigator-initiated, single-centre, double-blinded randomised controlled clinical trial in 120 critically ill patients needing platelet transfusion. The primary outcome measure will be the number of fresh frozen plasma (FFP) and red blood cell (RBC) transfusions according to groups. Secondary outcome measures include the number of platelet concentrates transfused within the first 48 h after treatment of study medication, quantity of blood loss in the first 48 h after treatment with the study medication, length of stay in ICU and hospital, number of revision surgeries for haemorrhage control, ICU mortality, hospital mortality, 30-day mortality and 1-year mortality. Patients will be followed after 30 days and 1 year for activities of daily living and mortality assessment. The sample size was calculated to detect a 50% reduction in the number of blood products subsequently transfused within 2 days in patients with Wilate® compared to placebo. ETHICS AND DISSEMINATION: This study has been approved by the Ethics Committee of Northwestern and Central Switzerland and will be conducted in compliance with the protocol, the current version of the Declaration of Helsinki, the ICH-GCP or ISO EN 14155 (as far as applicable) and all national legal and regulatory requirements. The study results will be presented at international conferences and published in a peer-reviewed journal. TRIALS REGISTRATION: ClinicalTrials.gov NCT04555785. PROTOCOL VERSION: Clinical Study Protocol Version 2, 01.11.2020. Registered on Sept. 21, 2020.


Subject(s)
Hemostatics , Platelet Transfusion , Humans , Platelet Transfusion/adverse effects , von Willebrand Factor , Hemostatics/adverse effects , Critical Illness , Activities of Daily Living , Hemorrhage/drug therapy , Randomized Controlled Trials as Topic
7.
J Med Internet Res ; 24(11): e41463, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36383427

ABSTRACT

Digital health interventions are being increasingly incorporated into health care workflows to improve the efficiency of patient care. In turn, sustained patient engagement with digital health interventions can maximize their benefits toward health care outcomes. In this viewpoint, we outline a dynamic patient engagement by using various communication channels and the potential use of omnichannel engagement to integrate these channels. We conceptualize a novel patient care journey where multiple web-based and offline communication channels are integrated through a "digital twin." The principles of implementing omnichannel engagement for digital health interventions and digital twins are also broadly covered. Omnichannel engagement in digital health interventions implies a flexibility for personalization, which can enhance and sustain patient engagement with digital health interventions, and ultimately, patient quality of care and outcomes. We believe that the novel concept of omnichannel engagement in health care can be greatly beneficial to patients and the system once it is successfully realized to its full potential.


Subject(s)
Patient Participation , Telemedicine , Humans , Communication , Workflow
8.
Acta Biomater ; 149: 111-125, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35835287

ABSTRACT

Rapid vascularization of clinical-size bone grafts is an unsolved challenge in regenerative medicine. Vascular endothelial growth factor-A (VEGF) is the master regulator of angiogenesis. Its over-expression by genetically modified human osteoprogenitors has been previously evaluated to drive vascularization in osteogenic grafts, but has been observed to cause paradoxical bone loss through excessive osteoclast recruitment. However, during bone development angiogenesis and osteogenesis are physiologically coupled by VEGF expression. Here we investigated whether the mode of VEGF delivery may be a key to recapitulate its physiological function. VEGF activity requires binding to the extracellular matrix, and heterogeneous levels of expression lead to localized microenvironments of excessive dose. Therefore we hypothesized that a homogeneous distribution of matrix-associated factor in the microenvironment may enable efficient coupling of angiogenesis and bone formation. This was achieved by decorating fibrin matrices with a cross-linkable engineered version of VEGF (TG-VEGF) that is released only by enzymatic cleavage by invading cells. In ectopic grafts, both TG-VEGF and VEGF-expressing progenitors similarly improved vascularization within the first week, but efficient bone formation was possible only in the factor-decorated matrices, whereas heterogenous, cell-based VEGF expression caused significant bone loss. In critical-size orthotopic calvaria defects, TG-VEGF effectively improved early vascular invasion, osteoprogenitor survival and differentiation, as well as bone repair compared to both controls and VEGF-expressing progenitors. In conclusion, homogenous distribution of matrix-associated VEGF protein preserves the physiological coupling of angiogenesis and osteogenesis, providing an attractive and clinically applicable strategy to engineer vascularized bone. STATEMENT OF SIGNIFICANCE: The therapeutic regeneration of vascularized bone is an unsolved challenge in regenerative medicine. Stimulation of blood vessel growth by over-expression of VEGF has been associated with paradoxical bone loss, whereas angiogenesis and osteogenesis are physiologically coupled by VEGF during development. Here we found that controlling the distribution of VEGF dose in an osteogenic graft is key to recapitulate its physiological function. In fact, homogeneous decoration of fibrin matrices with engineered VEGF could improve both vascularization and bone formation in orthotopic critical-size defects, dispensing with the need for combined osteogenic factor delivery. VEGF-decorated fibrin matrices provide a readily translatable platform for engineering a controlled microenvironment for bone regeneration.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Bone Regeneration , Fibrin/metabolism , Fibrin/pharmacology , Humans , Neovascularization, Pathologic/metabolism , Neovascularization, Physiologic , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology
9.
Sci Rep ; 11(1): 23993, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34907257

ABSTRACT

Previous work indicates that SARS-CoV-2 virus entry proteins angiotensin-converting enzyme 2 (ACE-2) and the cell surface transmembrane protease serine 2 (TMPRSS-2) are regulated by sex hormones. However, clinical studies addressing this association have yielded conflicting results. We sought to analyze the impact of sex hormones, age, and cardiovascular disease on ACE-2 and TMPRSS-2 expression in different mouse models. ACE-2 and TMPRSS-2 expression was analyzed by immunostaining in a variety of tissues obtained from FVB/N mice undergoing either gonadectomy or sham-surgery and being subjected to ischemia-reperfusion injury or transverse aortic constriction surgery. In lung tissues sex did not have a significant impact on the expression of ACE-2 and TMPRSS-2. On the contrary, following myocardial injury, female sex was associated to a lower expression of ACE-2 at the level of the kidney tubules. In addition, after myocardial injury, a significant correlation between younger age and higher expression of both ACE-2 and TMPRSS-2 was observed for lung alveoli and bronchioli, kidney tubules, and liver sinusoids. Our experimental data indicate that gonadal hormones and biological sex do not alter ACE-2 and TMPRSS-2 expression in the respiratory tract in mice, independent of disease state. Thus, sex differences in ACE-2 and TMPRSS-2 protein expression observed in mice may not explain the higher disease burden of COVID-19 among men.


Subject(s)
Aging/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Cardiomyopathies/metabolism , Castration/adverse effects , Serine Endopeptidases/metabolism , Animals , Bronchioles/metabolism , Disease Models, Animal , Female , Gene Expression Regulation , Kidney Tubules/metabolism , Liver/metabolism , Male , Mice , Pulmonary Alveoli/metabolism , Virus Internalization
10.
J Pers Med ; 11(4)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916056

ABSTRACT

BACKGROUND: Recent studies indicate that enhanced neuronal stress responses are associated with adverse cardiovascular outcomes. A chronic inflammatory state seems to mediate this detrimental neuro-cardiac communication. Statins are among the most widely prescribed medications in primary and secondary cardiovascular disease (CVD) prevention and not only lower lipid levels but also exhibit strong anti-inflammatory and neuroprotective effects. We therefore sought to investigate the influence of statins on neuronal stress responses in a patient cohort at risk for CVD. METHODS: 563 patients (61.5 ± 14.0 years) who underwent echocardiography and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) were retrospectively identified. Metabolic activity of the amygdala, a part of the brain's salience network, was quantified by 18F-FDG uptake, while normal cardiac morphology and function were assured by echocardiography. Vertebral bone marrow metabolism, a marker of inflammatory activity, was measured by 18F-FDG PET. RESULTS: Increased neuronal stress responses were associated with an increased inflammatory activity in the bone marrow (r = 0.152, p = 0.015) as well as with a subclinical reduction in left ventricular ejection fraction (LVEF, r = -0.138, p = 0.025). In a fully-adjusted linear regression model, statin treatment was identified as an independent, negative predictor of amygdalar metabolic activity (B-coefficient -0.171, p = 0.043). CONCLUSIONS: Our hypothesis-generating investigation suggests a potential link between the anti-inflammatory actions of statins and reduced neuronal stress responses which could lead to improved cardiovascular outcomes. The latter warrants further studies in a larger and prospective population.

11.
Intensive Care Med ; 47(5): 577-587, 2021 05.
Article in English | MEDLINE | ID: mdl-33884452

ABSTRACT

PURPOSE: It is currently unclear whether management and outcomes of critically ill patients differ between men and women. We sought to assess the influence of age, sex and diagnoses on the probability of intensive care provision in critically ill cardio- and neurovascular patients in a large nationwide cohort in Switzerland. METHODS: Retrospective analysis of 450,948 adult patients with neuro- and cardiovascular disease admitted to all hospitals in Switzerland between 01/2012 and 12/2016 using Bayesian modeling. RESULTS: For all diagnoses and populations, median ages at admission were consistently higher for women than for men [75 (64;82) years in women vs. 68 (58;77) years in men, p < 0.001]. Overall, women had a lower likelihood to be admitted to an intensive care unit (ICU) than men, despite being more severely ill [odds ratio (OR) 0.78 (0.76-0.79)]. ICU admission probability was lowest in women aged > 65 years (OR women:men 0.94 (0.89-0.99), p < 0.001). Women < 45 years had a similar ICU admission probability as men in the same age category [OR women:men 1.03 (0.94-1.13)], in spite of more severe illness. The odds to die were significantly higher in women than in men per unit increase in Simplified Acute Physiology Score (SAPS) II (OR 1.008 [1.004-1.012]). CONCLUSION: In the care of the critically ill, our study suggests that women are less likely to receive ICU treatment regardless of disease severity. Underuse of ICU care was most prominent in younger women < 45 years. Although our study has several limitations that are imposed by the limited data available from the registries, our findings suggest that current ICU triage algorithms could benefit from careful reassessment. Further, and ideally prospective, studies are needed to confirm our findings.


Subject(s)
Critical Care , Sex Characteristics , Adult , Bayes Theorem , Critical Illness/therapy , Female , Humans , Intensive Care Units , Male , Prospective Studies , Retrospective Studies , Switzerland
12.
J Nucl Cardiol ; 28(2): 427-432, 2021 04.
Article in English | MEDLINE | ID: mdl-33442821

ABSTRACT

PURPOSE: Amygdalar metabolic activity was shown to independently predict cardiovascular outcomes. However, little is known about age- and sex-dependent variability in neuronal stress responses among individuals free of cardiac disease. This study sought to assess age- and sex-specific differences of resting amygdalar metabolic activity in the absence of clinical cardiovascular disease. METHODS: Amygdalar metabolic activity was assessed in 563 patients who underwent multimodality imaging by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography and echocardiography for the evaluation of cardiac function. RESULTS: After exclusion of 294 patients with structural or functional cardiovascular pathologies, 269 patients (128 women) remained in the final population. 18F-FDG amygdalar activity significantly decreased with age in men (r = - 0.278, P = 0.001), but not in women (r = 0.002, P = 0.983). Similarly, dichotomous analysis confirmed a lower amygdalar activity in men ≥ 50 years as compared to those < 50 years of age (0.79 ± 0.1 vs. 0.84 ± 0.1, P = 0.007), which was not observed in women (0.81 ± 0.1 vs. 0.82 ± 0.1, P = 0.549). Accordingly, a fully adjusted linear regression analysis identified age as an independent predictor of amygdalar activity only in men (B-coefficient - 0.278, P = 0.001). CONCLUSION: Amygdalar activity decreases with age in men, but not in women. The use of amygdalar activity for cardiovascular risk stratification merits consideration of inherent age- and sex-dependent variability.


Subject(s)
Amygdala/metabolism , Cardiovascular Diseases/etiology , Adult , Age Factors , Aged , Amygdala/diagnostic imaging , Female , Fluorodeoxyglucose F18 , Heart Disease Risk Factors , Humans , Male , Middle Aged , Positron Emission Tomography Computed Tomography , Sex Characteristics
13.
J Clin Med ; 11(1)2021 Dec 25.
Article in English | MEDLINE | ID: mdl-35011843

ABSTRACT

AIMS OF THE STUDY: Virchow's triad with stasis, activated coagulation, and endothelial damage is common in SARS-CoV2. Therefore, we sought to retrospectively assess whether the duration of prone position may serve as a risk factor for deep vein thrombosis in critically ill patients. METHODS: In this single center retrospective study of a tertiary referral hospital, patients with acute respiratory distress syndrome (ARDS) due to COVID-19 pneumonia admitted to critical care underwent venous ultrasound screening for deep vein thrombosis (DVT). Data on DVT diagnosis, duration of prone positioning, demographic, respiratory, and laboratory parameters were retrospectively collected and compared between DVT and non-DVT patients. RESULTS: 21 patients with ARDS from COVID-19 pneumonia were analyzed. DVT was detected in 11 (52%) patients (76.2% male, median age 64 (58; 68.5) years, median body mass index 31 (27; 33.8) kg/m2). In patients diagnosed with DVT, median prone ventilation had been maintained twice as long as compared to patients without DVT (57 (19; 72) versus 28 (0; 56.3) h, p = 0.227) on ICU day 5 with a trend towards longer prone position time (71 (19; 104) versus 28 (0; 73) h, p = 0.06) on ICU day 7. CONCLUSIONS: Prone ventilation and constitutional factors may constitute an additional risk factor for DVT in COVID-19 patients. Since recent studies have shown that therapeutic anticoagulation does not impact the occurrence of thromboembolic events, it may be worthwhile to consider mechanical factors potentially affecting blood flow stasis in this high-risk population. However, due to the limited number of patients, our observations should only be considered as hypothesis-generating. Future studies, sufficiently powered and preferably prospective, will be needed to confirm our hypothesis.

14.
Int J Mol Sci ; 21(19)2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33008121

ABSTRACT

Most bones of the human body form and heal through endochondral ossification, whereby hypertrophic cartilage (HyC) is formed and subsequently remodeled into bone. We previously demonstrated that HyC can be engineered from human mesenchymal stromal cells (hMSC), and subsequently devitalized by apoptosis induction. The resulting extracellular matrix (ECM) tissue retained osteoinductive properties, leading to ectopic bone formation. In this study, we aimed at engineering and devitalizing upscaled quantities of HyC ECM within a perfusion bioreactor, followed by in vivo assessment in an orthotopic bone repair model. We hypothesized that the devitalized HyC ECM would outperform a clinical product currently used for bone reconstructive surgery. Human MSC were genetically engineered with a gene cassette enabling apoptosis induction upon addition of an adjuvant. Engineered hMSC were seeded, differentiated, and devitalized within a perfusion bioreactor. The resulting HyC ECM was subsequently implanted in a 10-mm rabbit calvarial defect model, with processed human bone (Maxgraft®) as control. Human MSC cultured in the perfusion bioreactor generated a homogenous HyC ECM and were efficiently induced towards apoptosis. Following six weeks of in vivo implantation, microcomputed tomography and histological analyses of the defects revealed an increased bone formation in the defects filled with HyC ECM as compared to Maxgraft®. This work demonstrates the suitability of engineered devitalized HyC ECM as a bone substitute material, with a performance superior to a state-of-the-art commercial graft. Streamlined generation of the devitalized tissue transplant within a perfusion bioreactor is relevant towards standardized and automated manufacturing of a clinical product.


Subject(s)
Cartilage/growth & development , Cell Differentiation/genetics , Mesenchymal Stem Cells/cytology , Osteogenesis/physiology , Skull/growth & development , Animals , Apoptosis/genetics , Bone Remodeling/genetics , Bone Substitutes/therapeutic use , Cartilage/metabolism , Cartilage/transplantation , Extracellular Matrix/genetics , Humans , Mesenchymal Stem Cell Transplantation , Osteogenesis/genetics , Rabbits , Skull/physiopathology , Skull/surgery , Tissue Engineering/methods , Tissue Scaffolds , Wound Healing/genetics
15.
J Tissue Eng Regen Med ; 14(12): 1908-1917, 2020 12.
Article in English | MEDLINE | ID: mdl-33049123

ABSTRACT

Avascular necrosis of bone (AVN) leads to sclerosis and collapse of bone and joints. We have previously shown that axially vascularized osteogenic constructs, engineered by combining human stromal vascular fraction (SVF) cells and a ceramic scaffold, can revitalize necrotic bone of clinically relevant size in a rat model of AVN. For a clinical translation, the fetal bovine serum (FBS) used to generate such grafts should be substituted by a nonxenogeneic culture supplement. Human thrombin-activated platelet-rich plasma (tPRP) was evaluated in this context. SVF cells were cultured inside porous hydroxyapatite scaffolds with a perfusion-based bioreactor system for 5 days. The culture medium was supplemented with either 10% FBS or 10% tPRP. The resulting constructs were inserted into devitalized bovine bone cylinders to mimic the treatment of a necrotic bone. A ligated vascular bundle was inserted into the constructs upon subcutaneous implantation in the groin of nude rats. After 1 and 8 weeks, constructs were harvested, and vascularization, host cell recruitment, and bone formation were analyzed. After 1 week in vivo, constructs were densely vascularized, with no difference between tPRP- and FBS-based ones. After 8 weeks, bone formation and vascularization was found in both tPRP- and FBS-precultured constructs. However, the amount of bone and the vessel density were respectively 2.2- and 1.8-fold higher in the tPRP group. Interestingly, the density of M2, proregenerative macrophages was also significantly higher (6.9-fold) following graft preparation with tPRP than with FBS. Our findings indicate that tPRP is a suitable substitute for FBS to generate vascularized, osteogenic grafts from SVF cells and could thus be implemented in protocols for clinical translation of this strategy towards the treatment of bone loss and AVN.


Subject(s)
Neovascularization, Physiologic , Osteogenesis , Platelet-Rich Plasma/metabolism , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Bone and Bones/physiology , Humans , Macrophages/metabolism , Rats, Nude , Receptors, Cell Surface/metabolism , Stromal Cells/cytology
16.
Trials ; 21(1): 740, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32843075

ABSTRACT

BACKGROUND: Critically ill patients rapidly develop muscle wasting resulting in sarcopenia, long-term disability and higher mortality. Bolus nutrition (30-60 min period), whilst having a similar incidence of aspiration as continuous feeding, seems to provide metabolic benefits through increased muscle protein synthesis due to higher leucine peaks. To date, clinical evidence on achievement of nutritional goals and influence of bolus nutrition on skeletal muscle metabolism in ICU patients is lacking. The aim of the Pro BoNo study (Protein Bolus Nutrition) is to compare intermittent and continuous enteral feeding with a specific high-protein formula. We hypothesise that target quantity of protein is reached earlier (within 36 h) by an intermittent feeding protocol with a favourable influence on muscle protein synthesis. METHODS: Pro BoNo is a prospective randomised controlled study aiming to compare the impact of intermittent and continuous enteral feeding on preventing muscle wasting in 60 critically ill patients recruited during the first 48 h after ICU admission. The primary outcome measure is the time until the daily protein target (≥ 1.5 g protein/kg bodyweight/24 h) is achieved. Secondary outcome measures include tolerance of enteral feeding and evolution of glucose, urea and IGF-1. Ultrasound and muscle biopsy of the quadriceps will be performed. DISCUSSION: The Basel Pro BoNo study aims to collect innovative data on the effect of intermittent enteral feeding of critically ill patients on muscle wasting. TRIAL REGISTRATION: ClinicalTrials.gov NCT03587870 . Registered on July 16, 2018. Swiss National Clinical Trials Portal SNCTP000003234. Last updated on July 24, 2019.


Subject(s)
Critical Illness , Dietary Proteins/administration & dosage , Enteral Nutrition/methods , Food, Formulated , Critical Illness/therapy , Humans , Intensive Care Units , Prospective Studies , Randomized Controlled Trials as Topic
17.
BMJ Open ; 10(4): e034873, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32354780

ABSTRACT

INTRODUCTION: Delirium is frequently observed in the intensive care unit (ICU) population, in particular. Until today, there is no evidence for any reliable pharmacological intervention to treat delirium. The Basel BOMP-AID (Better Outcome with Melatonin compared to Placebo Administered to normalize sleep-wake cycle and treat hypoactive ICU Delirium) randomised trial targets improvement of hypoactive delirium therapy in critically ill patients and will be conducted as a counterpart to the Basel ProDex Study (Study Protocol, BMJ Open, July 2017) on hyperactive and mixed delirium. The aim of the BOMP-AID trial is to assess the superiority of melatonin to placebo for the treatment of hypoactive delirium in the ICU. The study hypothesis is based on the assumption that melatonin administered at night restores a normal circadian rhythm, and that restoration of a normal circadian rhythm will cure delirium. METHODS AND ANALYSIS: The Basel BOMP-AID study is an investigator-initiated, single-centre, randomised controlled clinical trial for the treatment of hypoactive delirium with the once daily oral administration of melatonin 4 mg versus placebo in 190 critically ill patients. The primary outcome measure is delirium duration in 8-hour shifts. Secondary outcome measures include delirium-free days and death at 28 days after study inclusion, number of ventilator days, length of ICU and hospital stay, and sleep quality. Patients will be followed after 3 and 12 months for activities of daily living and mortality assessment. Sample size was calculated to demonstrate superiority of melatonin compared with placebo regarding the duration of delirium. Results will be presented using an intention-to-treat approach. ETHICS AND DISSEMINATION: This study has been approved by the Ethics Committee of Northwestern and Central Switzerland and will be conducted in compliance with the protocol, the current version of the Declaration of Helsinki, the International Conference on Harmonisation (ICH) of technical requirements for registration of pharmaceuticals for human use; Good Clinical Practice (GCP) or ISO EN 14155 (as far as applicable), as well as all national legal and regulatory requirements. Study results will be presented in international conferences and published in a peer-reviewed journal. TRIAL REGISTRATION NUMBER: NCT03438526. PROTOCOL VERSION: Clinical Study Protocol Version 3, 10.03.2019.


Subject(s)
Delirium , Melatonin , Activities of Daily Living , Delirium/drug therapy , Double-Blind Method , Humans , Intensive Care Units , Melatonin/therapeutic use , Prospective Studies , Randomized Controlled Trials as Topic , Sleep , Switzerland , Treatment Outcome
18.
Ann Plast Surg ; 83(4): 464-467, 2019 10.
Article in English | MEDLINE | ID: mdl-31524744

ABSTRACT

INTRODUCTION: In reconstructive surgery, fat volume augmentation is often necessary for esthetic or functional reasons. As an alternative to synthetic and xenogeneic materials, autologous fat grafting (AFG) based on liposuction is gaining popularity, yet successful transplantation and long-term volume maintenance are difficult. Standard tumescent solution formulations neglect adipocyte and stromal vascular fraction (SVF) cell survival during extraction, as well as SVF differentiation into adipocytes thereafter, all of which are crucial for the success of AFG. Here we hypothesized that addition of ascorbic acid (AA) to the tumescent solution could prevent liposuction-induced cell damage. MATERIALS AND METHODS: The effect of 0.1 mmol/L AA in tumescent solution was investigated in a previously described ex vivo model of AFG. Briefly, excision fat was infiltrated with tumescent solution, with or without AA, and incubated for 20 minutes at 37°C. Hand-assisted liposuction was then performed with a blunt cannula. Total cell viability, clonogenicity, and differentiation capacity of the SVF cells were assessed. RESULTS: With AA, 10.3% more cells and in particular 14.9% more adipocytes survived liposuction. Clonogenicity, adipocyte and osteoblast differentiation by SVF cells remained unchanged. CONCLUSIONS: Addition of AA successfully improved survival of adipocytes during liposuction without affecting SVF growth and differentiation. This study therefore identified a useful supplement to the tumescent solution which may lead to improving AFG success.


Subject(s)
Abdominal Fat/transplantation , Adipose Tissue/transplantation , Ascorbic Acid/pharmacology , Cell Survival/physiology , Lipectomy/methods , Adipocytes/transplantation , Adult , Aged , Anesthetics, Local , Cell Differentiation , Cohort Studies , Female , Graft Survival , Humans , Middle Aged , Sensitivity and Specificity , Stromal Cells/transplantation , Transplantation, Autologous/methods
19.
Int J Mol Sci ; 19(2)2018 Feb 06.
Article in English | MEDLINE | ID: mdl-29415458

ABSTRACT

Subchondral bone tissue plays a key role in the initiation and progression of human and experimental osteoarthritis and has received considerable interest as a treatment target. Elevated bone turnover and remodeling leads to subchondral bone sclerosis that is characterized by an increase in bone material that is less mineralized. The aim of this study was to investigate whether perturbations in subchondral bone-resident progenitor cells might play a role in aberrant bone formation in osteoarthritis. Colony formation assays indicated similar clonogenicity of progenitor cells from non-sclerotic and sclerotic subchondral trabecular bone tissues of osteoarthritic knee and hip joints compared with controls from iliac crest bone. However, the osteogenic potential at the clonal level was approximately two-fold higher in osteoarthritis than controls. An osteogenic differentiation assay indicated an efficient induction of alkaline phosphatase activity but blunted in vitro matrix mineralization irrespective of the presence of sclerosis. Micro-computed tomography and histology demonstrated the formation of de novo calcified tissues by osteoblast-like cells in an ectopic implantation model. The expression of bone sialoprotein, a marker for osteoblast maturation and mineralization, was significantly less in sclerotic progenitor cells. Perturbation of resident progenitor cell function is associated with subchondral bone sclerosis and may be a treatment target for osteoarthritis.


Subject(s)
Bone and Bones/metabolism , Bone and Bones/pathology , Osteoarthritis, Hip/etiology , Osteoarthritis, Hip/pathology , Osteoarthritis, Knee/etiology , Osteoarthritis, Knee/pathology , Osteoblasts/metabolism , Phenotype , Aged , Aged, 80 and over , Bone and Bones/diagnostic imaging , Cell Differentiation , Cells, Cultured , Female , Humans , Male , Middle Aged , Osteoarthritis, Hip/diagnostic imaging , Osteoarthritis, Knee/diagnostic imaging , Osteoblasts/cytology , Osteogenesis , Sclerosis , Stem Cells , X-Ray Microtomography
20.
Cytotechnology ; 70(2): 807-817, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29344745

ABSTRACT

The isolation of stromal vascular fraction (SVF) cells from excised human adipose tissue, for clinical or research purposes, implies the tedious and time consuming process of manual mincing prior to enzymatic digestion. Since no efficient alternative technique to this current standard procedure has been proposed so far, the aim of this study was to test a milling procedure, using two simple, inexpensive and commercially available manual meat grinders, to process large amounts of adipose tissue. The procedure was assessed on adipose tissue resections from seven human donors and compared to manual mincing with scalpels. The processed adipose tissues were digested and the resulting SVF cells compared in terms of number, clonogenicity and differentiation capacity. After 10 min of processing, either device tested yielded on average sixfold more processed material for subsequent cell isolation than manual mincing. The isolation yield of SVF cells (isolated cells per ml of adipose tissue), their viability, phenotype, clonogenicity and osteogenic/adipogenic differentiation capacity, tested by production of mineralized matrix and lipid vacuoles, respectively, were comparable. This new method is practical and inexpensive and represents an efficient alternative to the current standard for large scale adipose tissue resection processing. A device based on the milling principle could be embedded within a streamlined system for isolation and clinical use of SVF cells from adipose tissue excision.

SELECTION OF CITATIONS
SEARCH DETAIL
...