Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 214: 108884, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38945096

ABSTRACT

The phytohormones cytokinins are essential mediators of developmental and environmental signaling, primarily during cell division and endophytic interactions, among other processes. Considering the limited understanding of the regulatory mechanisms that affect the growth and bioactivity of the medicinal plant Nepeta nuda (Lamiaceae), our study aimed to explore how cytokinins influence the plant's metabolic status. Exogenous administration of active cytokinin forms on in vitro N. nuda internodes stimulated intensive callus formation and de novo shoot regeneration, leading to a marked increase in biomass. This process involved an accumulation of oxidants, which were scavenged by peroxidases using phenolics as substrates. The callus tissue formed upon the addition of the cytokinin 6-benzylaminopurine (BAP) acted as a sink for sugars and phenolics during the allocation of nutrients between the culture medium and regenerated plants. In accordance, the cytokinin significantly enhanced the content of polar metabolites and their respective in vitro biological activities compared to untreated in vitro and wild-grown plants. The BAP-mediated accumulation of major phenolic metabolites, rosmarinic acid (RA) and caffeic acid (CA), corresponded with variations in the expression levels of genes involved in their biosynthesis. In contrast, the accumulation of iridoids and the expression of corresponding biosynthetic genes were not significantly affected. In conclusion, our study elucidated the mechanism of cytokinin action in N. nuda in vitro culture and demonstrated its potential in stimulating the production of bioactive compounds. This knowledge could serve as a basis for further investigations of the environmental impact on plant productivity.

2.
Front Plant Sci ; 13: 866777, 2022.
Article in English | MEDLINE | ID: mdl-35651766

ABSTRACT

Nepeta nuda (catmint; Lamiaceae) is a perennial medicinal plant with a wide geographic distribution in Europe and Asia. This study first characterized the taxonomic position of N. nuda using DNA barcoding technology. Since medicinal plants are rich in secondary metabolites contributing to their adaptive immune response, we explored the N. nuda metabolic adjustment operating under variable environments. Through comparative analysis of wild-grown and in vitro cultivated plants, we assessed the change in phenolic and iridoid compounds, and the associated immune activities. The wild-grown plants from different Bulgarian locations contained variable amounts of phenolic compounds manifested by a general increase in flowers, as compared to leaves, while a strong reduction was observed in the in vitro plants. A similar trend was noted for the antioxidant and anti-herpesvirus activity of the extracts. The antimicrobial potential, however, was very similar, regardless the growth conditions. Analysis of the N. nuda extracts led to identification of 63 compounds including phenolic acids and derivatives, flavonoids, and iridoids. Quantification of the content of 21 target compounds indicated their general reduction in the extracts from in vitro plants, and only the ferulic acid (FA) was specifically increased. Cultivation of in vitro plants under different light quality and intensity indicated that these variable light conditions altered the content of bioactive compounds, such as aesculin, FA, rosmarinic acid, cirsimaritin, naringenin, rutin, isoquercetin, epideoxyloganic acid, chlorogenic acid. Thus, this study generated novel information on the regulation of N. nuda productivity using light and other cultivation conditions, which could be exploited for biotechnological purposes.

3.
Article in English | MEDLINE | ID: mdl-32312162

ABSTRACT

АBSTRACTEsters of the antiherpetic drugs ganciclovir, penciclovir with the bile acids (cholic, chenodeoxycholic and deoxycholic) and amino acid esters of acyclovir were generated and evaluated for their in vitro antiviral activity against herpes simplex viruses type 1 and type 2 (HSV-1, HSV-2). The antiviral assays demonstrated that modified analogs of ACV and PCV are less active compared to the initial substances against HSV-1and HSV-2. CC50 for ganciclovir-deoxycholate corresponded to the CC50 of the other analogs and its activity is lower than ganciclovir. Obtained results show that tested modification do not improve bioavailability of nucleoside analogs in cells.


Subject(s)
Acyclovir/pharmacology , Antiviral Agents/pharmacology , Ganciclovir/pharmacology , Guanine/pharmacology , Herpesvirus 1, Human/drug effects , Herpesvirus 2, Human/drug effects , Acyclovir/chemical synthesis , Acyclovir/chemistry , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cattle , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Ganciclovir/chemical synthesis , Ganciclovir/chemistry , Guanine/chemical synthesis , Guanine/chemistry , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
4.
Amino Acids ; 50(8): 1131-1143, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29779181

ABSTRACT

Bile acid prodrugs have served as a viable strategy for refining the pharmaceutical profile of parent drugs through utilizing bile acid transporters. A series of three ester prodrugs of the antiherpetic drug acyclovir (ACV) with the bile acids cholic, chenodeoxycholic and deoxycholic were synthesized and evaluated along with valacyclovir for their in vitro antiviral activity against herpes simplex viruses type 1 and type 2 (HSV-1, HSV-2). The in vitro antiviral activity of the three bile acid prodrugs was also evaluated against Epstein-Barr virus (EBV). Plasma stability assays, utilizing ultra-high performance liquid chromatography coupled with tandem mass spectrometry, in vitro cytotoxicity and inhibitory experiments were conducted in order to establish the biological profile of ACV prodrugs. The antiviral assays demonstrated that ACV-cholate had slightly better antiviral activity than ACV against HSV-1, while it presented an eight-fold higher activity with respect to ACV against HSV-2. ACV-chenodeoxycholate presented a six-fold higher antiviral activity against HSV-2 with respect to ACV. Concerning EBV, the highest antiviral effect was demonstrated by ACV-chenodeoxycholate. Human plasma stability assays revealed that ACV-deoxycholate was more stable than the other two prodrugs. These results suggest that decorating the core structure of ACV with bile acids could deliver prodrugs with amplified antiviral activity.


Subject(s)
Acyclovir , Antiviral Agents , Bile Acids and Salts , Herpesvirus 1, Human/drug effects , Herpesvirus 2, Human/drug effects , Herpesvirus 4, Human/drug effects , Prodrugs , Acyclovir/chemistry , Acyclovir/pharmacology , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Bile Acids and Salts/chemistry , Cell Line , Humans , Prodrugs/chemical synthesis , Prodrugs/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...