Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Immunol ; 21(1): 56, 2020 10 30.
Article in English | MEDLINE | ID: mdl-33126863

ABSTRACT

BACKGROUND: Pregnancy-specific ß1-glycoproteins are capable of regulating innate and adaptive immunity, exerting predominantly suppressive effects. In this regard, they are of interest in terms of their pharmacological potential for the treatment of autoimmune diseases and post-transplant complications. The effect of these proteins on the main pro-inflammatory subpopulation of T lymphocytes, IL-17-producing helper T cells (Th17), has not been comprehensively studied. Therefore, the effects of the native pregnancy-specific ß1-glycoprotein on the proliferation, Th17 polarization and cytokine profile of human CD4+ cells were assessed. RESULTS: Native human pregnancy-specific ß1-glycoprotein (PSG) at а concentration of 100 µg/mL was shown to decrease the frequency of Th17 (RORγτ+) in CD4+ cell culture and to suppress the proliferation of these cells (RORγτ+Ki-67+), along with the proliferation of other cells (Ki-67+) (n = 11). A PSG concentration of 10 µg/mL showed similar effect, decreasing the frequency of Ki-67+ and RORγτ+Ki67+ cells. Using Luminex xMAP technology, it was shown that PSG decreased IL-4, IL-5, IL-8, IL-12, IL-13, IL-17, MIP-1ß, IL-10, IFN-γ, TNF-α, G-CSF, and GM-CSF concentrations in Th17-polarized CD4+ cell cultures but did not affect IL-2, IL-7, and MCP-1 output. CONCLUSIONS: In the experimental model used, PSG had а mainly suppressive effect on the Th17 polarization and cytokine profile of Th17-polarized CD4+ cell cultures. As Th17 activity and a pro-inflammatory cytokine background are unfavorable during pregnancy, the observed PSG effects may play a fetoprotective role in vivo.


Subject(s)
Pregnancy-Specific beta 1-Glycoproteins/metabolism , Pregnancy/immunology , Th17 Cells/immunology , Adult , Cell Differentiation , Cell Proliferation , Cells, Cultured , Cytokines/metabolism , Female , Humans , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Young Adult
2.
Stem Cells Int ; 2019: 9640790, 2019.
Article in English | MEDLINE | ID: mdl-30915126

ABSTRACT

INTRODUCTION: The adult neural crest-derived stem cells (NCSCs) have significant perspectives for use in regenerative medicine. The most attractive sources for adult NCSC isolation are the hair follicles (HF) and skin dermis (SD) because of easy access and minimally invasive biopsy. The aim of this study was to compare the biological properties of HF- and SD-derived NCSCs after their large-scale expansion. METHODS: The conventional explant method was used to obtain HF NCSCs. For the isolation of SD NCSCs, a new combined technique consisting of preplating and subsequent culturing in 3D blood plasma-derived fibrin hydrogel was applied. The studied cells were characterized by flow cytometry, ICC, qPCR, Bio-Plex multiplex assay, and directed multilineage differentiation assays. RESULTS: We have obtained both adult SD and HF NCSCs from each skin sample (n = 5). Adult SD and HF NCSCs were positive for key neural crest markers: SOX10, P75 (CD271), NESTIN, SOX2, and CD349. SD NCSCs showed a higher growth rate during the large-scale expansion compared to HF NCSCs (p < 0.01). Final population of SD NCSCs also contained more clonogenic cells (p < 0.01) and SOX10+, CD271+, CD105+, CD140a+, CD146+, CD349+ cells (p < 0.01). Both HF and SD NCSCs had similar gene expression profiling and produced growth factors, but some quantitative differences were detected. Adult HF and SD NCSCs were able to undergo directed differentiation into neurons, Schwann cells, adipocytes, and osteoblasts. CONCLUSION: The HF and SD are suitable sources for large-scale manufacturing of adult NCSCs with similar biological properties. We demonstrated that the NCSC population from SD was homogenous and displayed significantly higher growth rate than HF NCSCs. Moreover, SD NCSC isolation is cheaper, easier, and minimally time-consuming method.

3.
Eur Cytokine Netw ; 27(4): 102-107, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-28396296

ABSTRACT

СD3+ T lymphocytes were isolated by positive magnetic separation from the peripheral blood of healthy donors. In the absence of any additional activating stimuli, interleukin-7 (IL-7) was shown to augment the levels of T cells expressing CD25 activation marker both in СD4-positive and in CD4-negative effector memory (CD45RA-CD197-) T cell subsets, as well as in terminally differentiated (CD45RA+CD197-) Т cells, without significantly affecting the activation status of naive (CD45RA+CD197+) and central memory (CD45RA-CD197+) T cells. In addition, IL-7 noticeably enhanced the production of IL-2, interferon-γ (IFN-γ), and IL-10, but not IL-4, in T cells. The direct effects of IL-7 on T cell activation induced in vitro by MACSiBead™ particles coated with CD2, CD3, and CD28 antibodies (Abs) were also investigated. Upon cell activation, IL-7 significantly augmented the levels of CD25+ T cells in naive (CD45RA+CD197+), central memory (CD45RA-CD197+), and effector memory (CD45RA-CD197-) T-cell compartments. In addition, IL-7 facilitated activation of СD4- (but not CD4+) terminally differentiated effector (CD45RA+CD197-) Т cells. Finally, IL-7 was found to upregulate the production of IL-2, IFN-γ, IL-4, and IL-10 by activated T cells. In conclusion, we speculate that IL-7 is capable of enhancing functional T cell activity without causing significant functional inbalance between various T cell subsets.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Immunologic Memory/drug effects , Interleukin-7/pharmacology , Adult , CD4-Positive T-Lymphocytes/cytology , Female , Humans , Interferon-gamma/immunology , Interleukin-10/immunology , Interleukin-2/immunology , Interleukin-4/immunology , Interleukin-7/immunology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...