Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 16: 736642, 2022.
Article in English | MEDLINE | ID: mdl-35356050

ABSTRACT

Neuromorphic computer models are used to explain sensory perceptions. Auditory models generate cochleagrams, which resemble the spike distributions in the auditory nerve. Neuron ensembles along the auditory pathway transform sensory inputs step by step and at the end pitch is represented in auditory categorical spaces. In two previous articles in the series on periodicity pitch perception an extended auditory model had been successfully used for explaining periodicity pitch proved for various musical instrument generated tones and sung vowels. In this third part in the series the focus is on octopus cells as they are central sensitivity elements in auditory cognition processes. A powerful numerical model had been devised, in which auditory nerve fibers (ANFs) spike events are the inputs, triggering the impulse responses of the octopus cells. Efficient algorithms are developed and demonstrated to explain the behavior of octopus cells with a focus on a simple event-based hardware implementation of a layer of octopus neurons. The main finding is, that an octopus' cell model in a local receptive field fine-tunes to a specific trajectory by a spike-timing-dependent plasticity (STDP) learning rule with synaptic pre-activation and the dendritic back-propagating signal as post condition. Successful learning explains away the teacher and there is thus no need for a temporally precise control of plasticity that distinguishes between learning and retrieval phases. Pitch learning is cascaded: At first octopus cells respond individually by self-adjustment to specific trajectories in their local receptive fields, then unions of octopus cells are collectively learned for pitch discrimination. Pitch estimation by inter-spike intervals is shown exemplary using two input scenarios: a simple sinus tone and a sung vowel. The model evaluation indicates an improvement in pitch estimation on a fixed time-scale.

2.
Opt Express ; 20(27): 28683-97, 2012 Dec 17.
Article in English | MEDLINE | ID: mdl-23263106

ABSTRACT

We propose an efficient multiplexing technique for superconducting nanowire single-photon detectors based on an orthogonal detector bias switching method enabling the extraction of the average count rate of a set of detectors by one readout line. We implemented a system prototype where the SNSPDs are connected to an integrated cryogenic readout and a pulse merger system based on rapid single flux quantum (RSFQ) electronics. We discuss the general scalability of this concept, analyze the environmental requirements which define the resolvability and the accuracy and demonstrate the feasibility of this approach with experimental results for a SNSPD array with four pixels.


Subject(s)
Conductometry/instrumentation , Electronics/instrumentation , Photometry/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Electric Conductivity , Equipment Design , Equipment Failure Analysis , Light , Photons
SELECTION OF CITATIONS
SEARCH DETAIL
...