Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antiviral Res ; 228: 105939, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909960

ABSTRACT

Viruses have developed sophisticated strategies to control metabolic activity of infected cells in order to supply replication machinery with energy and metabolites. Dengue virus (DENV), a mosquito-borne flavivirus responsible for dengue fever, is no exception. Previous reports have documented DENV interactions with metabolic pathways and shown in particular that glycolysis is increased in DENV-infected cells. However, underlying molecular mechanisms are still poorly characterized and dependence of DENV on this pathway has not been investigated in details yet. Here, we identified an interaction between the non-structural protein 3 (NS3) of DENV and glucokinase regulator protein (GCKR), a host protein that inhibits the liver-specific hexokinase GCK. NS3 expression was found to increase glucose consumption and lactate secretion in hepatic cell line expressing GCK. Interestingly, we observed that GCKR interaction with GCK decreases DENV replication, indicating the dependence of DENV to GCK activity and supporting the role of NS3 as an inhibitor of GCKR function. Accordingly, in the same cells, DENV replication both induces and depends on glycolysis. By targeting NAD(H) biosynthesis with the antimetabolite 6-Amino-Nicotinamide (6-AN), we decreased cellular glycolytic activity and inhibited DENV replication in hepatic cells. Infection of primary organotypic liver cultures (OLiC) from hamsters was also inhibited by 6-AN. Altogether, our results show that DENV has evolved strategies to control glycolysis in the liver, which could account for hepatic dysfunctions associated to infection. Besides, our findings suggest that lowering intracellular availability of NAD(H) could be a valuable therapeutic strategy to control glycolysis and inhibit DENV replication in the liver.


Subject(s)
Dengue Virus , Dengue , Glucokinase , Glycolysis , NAD , Viral Nonstructural Proteins , Virus Replication , Glycolysis/drug effects , Dengue Virus/drug effects , Glucokinase/metabolism , Glucokinase/antagonists & inhibitors , Humans , Virus Replication/drug effects , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Animals , Dengue/drug therapy , Dengue/virology , Dengue/metabolism , NAD/metabolism , NAD/biosynthesis , Cell Line , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Glucose/metabolism , Liver/virology , Liver/metabolism , Antiviral Agents/pharmacology , Viral Proteases , Serine Endopeptidases , Nucleoside-Triphosphatase , DEAD-box RNA Helicases
2.
mBio ; 14(5): e0154923, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37671888

ABSTRACT

IMPORTANCE: Assessments of viral stability on surfaces or in body fluids under different environmental conditions and/or temperatures are often performed, as they are key to understanding the routes and parameters of viral transmission and to providing clues on the epidemiology of infections. However, for most viruses, the mechanisms of inactivation vs stability of viral particles remain poorly defined. Although they are structurally diverse, with different compositions, sizes, and shapes, enveloped viruses are generally less stable than non-enveloped viruses, pointing out the role of envelopes themselves in virus lability. In this report, we investigated the properties of hepatitis C virus (HCV) particles with regards to their stability. We found that, compared to alternative enveloped viruses such as Dengue virus (DENV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), hepatitis delta virus (HDV), and Crimean-Congo hemorrhagic fever virus (CCHFV) that infect the liver, HCV particles are intrinsically labile. We determined the mechanisms that drastically alter their specific infectivity through oxidation of their lipids, and we highlighted that they are protected from lipid oxidation by secreted cellular proteins, which can protect their membrane fusion capacity and overall infectivity.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hepatitis C , Humans , Hepacivirus , Hemorrhagic Fever Virus, Crimean-Congo/physiology , Hepatitis C/metabolism
3.
Pathogens ; 10(11)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34832657

ABSTRACT

The Gag polyprotein is implied in the budding as well as the establishment of the supramolecular architecture of infectious retroviral particles. It is also involved in the early phases of the replication of retroviruses by protecting and transporting the viral genome towards the nucleus of the infected cell until its integration in the host genome. Therefore, understanding the structure-function relationships of the Gag subunits is crucial as each of them can represent a therapeutic target. Though the field has been explored for some time in the area of Human Immunodeficiency Virus (HIV), it is only in the last decade that structural data on Feline Immunodeficiency Virus (FIV) Gag subunits have emerged. As FIV is an important veterinary issue, both in domestic cats and endangered feline species, such data are of prime importance for the development of anti-FIV molecules targeting Gag. This review will focus on the recent advances and perspectives on the structure-function relationships of each subunit of the FIV Gag polyprotein.

SELECTION OF CITATIONS
SEARCH DETAIL
...