Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Biochem Pharmacol ; 180: 114172, 2020 10.
Article in English | MEDLINE | ID: mdl-32712053

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease with irreversible loss of lung tissue and function. Myofibroblasts in the lung are key cellular mediators of IPF progression. Transforming growth factor (TGF)-ß1, a major profibrogenic cytokine, induces pulmonary myofibroblast differentiation, and emerging evidence has established the importance of microRNAs (miRs) in the development of IPF. The objective of this study was to define the pro-fibrotic roles and mechanisms of miRs in TGF-ß1-induced pulmonary myofibroblast differentiation. Using RNA sequencing, we identified miR-424 as an important TGF-ß1-induced miR in human lung fibroblasts (HLFs). Quantitative RT-PCR confirmed that miR-424 expression was increased by 2.6-fold in HLFs in response to TGF-ß1 and was 1.7-fold higher in human fibrotic lung tissues as compared to non-fibrotic lung tissues. TGF-ß1-induced upregulation of miR-424 was blocked by the Smad3 inhibitor SIS3, suggesting the involvement of this canonical TGF-ß1 signaling pathway. Transfection of a miR-424 hairpin inhibitor into HLFs reduced TGF-ß1-induced expression of classic myofibroblast differentiation markers including ɑ-smooth muscle actin (ɑ-SMA) and connective tissue growth factor (CTGF), whereas a miR-424 mimic significantly enhanced TGF-ß1-induced myofibroblast differentiation. In addition, TGF-ß1 induced Smad3 phosphorylation in HLFs, and this response was reduced by the miR-424 inhibitor. In silico analysis identified Slit2, a protein that inhibits TGF-ß1 profibrogenic signaling, as a putative target of regulation by miR-424. Slit2 is less highly expressed in human fibrotic lung tissues than in non-fibrotic lung tissues, and knockdown of Slit2 by its siRNA enhanced TGF-ß1-induced HLF differentiation. Overexpression of a miR-424 mimic down-regulated expression of Slit2 but not the Slit2 major receptor ROBO1 in HLFs. Luciferase reporter assays showed that the miR-424 mimic represses Slit2 3' untranslated region (3'-UTR) reporter activity, and mutations at the seeding regions in the 3'-UTR of Slit2 abolish this inhibition. Together, these data demonstrate a pro-fibrotic role of miR-424 in TGF-ß1-induced HLF differentiation. It functions as a positive feed-back regulator of the TGF-ß1 signaling pathway by reducing expression of the negative regulator Slit2. Thus, targeting miR-424 may provide a new therapeutic strategy to prevent myofibroblast differentiation and IPF progression.


Subject(s)
Cell Differentiation/physiology , Intercellular Signaling Peptides and Proteins/biosynthesis , Lung/metabolism , MicroRNAs/biosynthesis , Myofibroblasts/metabolism , Nerve Tissue Proteins/biosynthesis , Transforming Growth Factor beta1/pharmacology , Cell Differentiation/drug effects , Dose-Response Relationship, Drug , Gene Expression , HEK293 Cells , Humans , Intercellular Signaling Peptides and Proteins/genetics , Lung/cytology , Lung/drug effects , MicroRNAs/genetics , Myofibroblasts/drug effects , Nerve Tissue Proteins/genetics
2.
Naunyn Schmiedebergs Arch Pharmacol ; 393(5): 843-856, 2020 05.
Article in English | MEDLINE | ID: mdl-31884570

ABSTRACT

Pulmonary fibrosis is characterized by fibroblasts persisting in an activated form, producing excessive fibrous material that destroys alveolar structure. The second messenger molecule cyclic 3',5'-adenosine monophosphate (cAMP) has antifibrotic properties, and prostaglandin E2 (PGE2) can stimulate cAMP production through prostaglandin E (EP)2 and EP4 receptors. Although EP receptors are attractive therapeutic targets, the effects of long-term exposure to PGE2 have not been characterized. To determine the effects of long-term exposure of lung fibroblasts to PGE2, human fetal lung (HFL)-1 cells were treated for 24 h with 100 nM PGE2 or other cAMP-elevating agents. cAMP levels stimulated by acute exposure to PGE2 were measured using a fluorescent biosensor. Pretreatment for 24 h with PGE2 shifted the concentration-response curve to PGE2 rightward by approximately 22-fold but did not affect responses to the beta-adrenoceptor agonist isoproterenol. Neither isoproterenol nor forskolin pretreatment altered PGE2 responses, implying that other cAMP-elevating agents do not induce desensitization. Use of EP2- and EP4-selective agonists and antagonists suggested that PGE2-stimulated cAMP responses in HFL-1 cells are mediated by EP2 receptors. EP2 receptors are resistant to classical mechanisms of agonist-specific receptor desensitization, so we hypothesized that increased PDE activity mediates the loss of signaling after PGE2 pretreatment. PGE2 treatment upregulated messenger RNA for PDE3A, PDE3B, PDE4B, and PDE4D and increased overall PDE activity. The PDE4 inhibitor rolipram partially reversed PGE2-mediated desensitization and PDE4 activity was increased, but rolipram did not alter responses to isoproterenol. The PDE3 inhibitor cilostazol had minimal effect. These results show that long-term exposure to PGE2 causes agonist-specific desensitization of EP2 receptor-stimulated cAMP signaling through the increased expression of PDE isozymes, most likely of the PDE4 family.


Subject(s)
Cyclic AMP/metabolism , Dinoprostone/pharmacology , Fibroblasts/drug effects , Lung/drug effects , Phosphoric Diester Hydrolases/metabolism , Pulmonary Fibrosis/drug therapy , Receptors, Prostaglandin E, EP2 Subtype/agonists , Cells, Cultured , Dose-Response Relationship, Drug , Fibroblasts/enzymology , Fibroblasts/pathology , Humans , Isoenzymes , Lung/enzymology , Lung/pathology , Phosphoric Diester Hydrolases/genetics , Pulmonary Fibrosis/enzymology , Pulmonary Fibrosis/pathology , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Second Messenger Systems , Up-Regulation
3.
Sci Rep ; 9(1): 15480, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31664130

ABSTRACT

Oxytocin (OXT) is an important neuromodulator of social behaviors via activation of both oxytocin receptors (OXTR) and vasopressin (AVP) 1a receptors (AVPR1a). Marmosets are neotropical primates with a modified OXT ligand (Pro8-OXT), and this ligand shows significant coevolution with traits including social monogamy and litter size. Pro8-OXT produces more potent and efficacious responses at primate OXTR and stronger behavioral effects than the consensus mammalian OXT ligand (Leu8-OXT). Here, we tested whether OXT/AVP ligands show differential levels of crosstalk at primate AVPR1a. We measured binding affinities and Ca2+ signaling responses of AVP, Pro8-OXT and Leu8-OXT at human, macaque, and marmoset AVPR1a. We found that AVP binds with higher affinity than OXT across AVPR1a, and marmoset AVPR1a show a 10-fold lower OXT binding affinity compared to human and macaque AVPR1a. Both Leu8-OXT and Pro8-OXT produce a less efficacious response than AVP at human AVPR1a and higher efficacious response than AVP at marmoset AVPR1a. These data suggest that OXT might partially antagonize endogenous human AVPR1a signaling and enhance marmoset AVPR1a signaling. These findings aid in further understanding inconsistencies observed following systemic intranasal administration of OXT and provide important insights into taxon-specific differences in nonapeptide ligand/receptor coevolution and behavior.


Subject(s)
Arginine Vasopressin/pharmacology , Leucine/chemistry , Oxytocin/pharmacology , Proline/chemistry , Receptors, Oxytocin/agonists , Receptors, Vasopressin/agonists , Animals , Arginine Vasopressin/chemistry , CHO Cells , Calcium/metabolism , Callithrix , Cricetulus , Humans , Macaca , Oxytocin/chemistry , Receptors, Oxytocin/metabolism , Signal Transduction , Species Specificity
4.
J Pharmacol Exp Ther ; 367(1): 101-107, 2018 10.
Article in English | MEDLINE | ID: mdl-30068728

ABSTRACT

A clade of New World monkeys (NWMs) exhibits considerable diversity in both oxytocin (OT) ligand and oxytocin receptor (OTR) structure. Most notable is the variant Pro8-OT, with proline instead of leucine at the eighth position, resulting in a rigid bend in the peptide backbone. A higher proportion of species that express Pro8-OT also engage in biparental care and social monogamy. When marmosets (genus Callithrix), a biparental and monogamous Pro8-OT NWM species, are administered the ancestral Leu8-OT, there is no change in social behavior compared with saline treatment. However, when Pro8-OT is administered, marmosets' sociosexual and prosocial behaviors are altered. The studies here tested the hypothesis that OTR binding affinities and OT-induced intracellular Ca2+ potencies would favor the native OT ligand in OTRs from four primate species, each representing a unique combination of ancestral lineage, breeding system, and native OT ligand: humans (Leu8-OT, monogamous, apes), macaques (Leu8-OT, nonmonogamous, Old World monkey), marmosets (Pro8-OT, monogamous, NWM), and titi monkeys (Leu8-OT, monogamous, NWM). OTRs were expressed in immortalized Chinese hamster ovary cells and tested for intact-cell binding affinities for Pro8-OT, Leu8-OT, and arginine vasopressin (AVP), as well as intracellular Ca2+ signaling after stimulation with Pro8-OT, Leu8-OT, and AVP. Contrary to our hypothesis, Pro8-OT bound at modestly higher affinities and stimulated calcium signaling at modestly higher potencies compared with Leu8-OT in all four primate OTRs. Thus, differences downstream from a ligand-receptor binding event are more likely to explain the different behavioral responses to these two ligands.


Subject(s)
Behavior, Animal/physiology , Oxytocin/metabolism , Receptors, Oxytocin/metabolism , Vasopressins/metabolism , Animals , Arginine Vasopressin/metabolism , CHO Cells , Calcium/metabolism , Calcium Signaling/physiology , Callithrix/metabolism , Cell Line , Cricetulus , Ligands , Primates/metabolism , Receptors, Vasopressin/metabolism , Social Behavior
5.
Exp Lung Res ; 44(10): 443-454, 2018 12.
Article in English | MEDLINE | ID: mdl-30862200

ABSTRACT

PURPOSE OF THE STUDY: Workers in enclosed hogbarns experience an increased incidence of airway inflammation and obstructive lung disease, and an aqueous hogbarn dust extract (HDE) induces multiple inflammation-related responses in cultured airway epithelial cells. Epidermal growth factor receptor (EGFR) phosphorylation and activation has been identified as one important mediator of inflammatory cytokine release from these cells. The studies here investigated both early and late phase adaptive changes in EGFR binding properties and subcellular localization induced by exposure of cells to HDE. MATERIALS AND METHODS: Cell surface EGFRs were quantified as binding to intact cells on ice. EGFR phosphorylation, expression, and localization were assessed with anti-EGFR antibodies and either blotting or confocal microscopy. RESULTS: In BEAS-2B and primary human bronchial epithelial cells, HDE induced decreases in cell surface EGFR binding following both 15-min and 18-h exposures. In contrast, H292 cells exhibited only the 15-min decrease, with binding near the control level at 18 hr. Confocal microscopy showed that the 15-min decrease in binding is due to EGFR endocytosis. Although total EGFR immunoreactivity decreased markedly at 18 hr in confocal microscopy with BEAS-2B cells, immunoblots showed no loss of EGFR protein. HDE stimulated EGFR phosphorylation at both 15 min and 18 hr in BEAS-2B cells and primary cells, but only at 15 min in H292 cells, indicating that the different EGFR binding changes among these cell types is likely related to their different time-dependent changes in phosphorylation. CONCLUSIONS: These studies extend the evidence for EGFRs as important cellular targets for components of HDE and they reveal novel patterns of EGFR phosphorylation and binding changes that vary among airway epithelial cell types. The results provide both impetus and convenient assays for identifying the EGFR-activating components and pathways that likely contribute to hogbarn dust-induced lung disease in agricultural workers.


Subject(s)
Epithelial Cells/metabolism , ErbB Receptors/metabolism , Lung Diseases/etiology , Occupational Diseases/etiology , Particulate Matter/adverse effects , Animals , Cell Line , Dust , Humans , Phosphorylation , Respiratory Mucosa/metabolism , Swine
6.
Am J Physiol Lung Cell Mol Physiol ; 314(3): L421-L431, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29097425

ABSTRACT

Injurious dust exposures in the agricultural workplace involve the release of inflammatory mediators and activation of epidermal growth factor receptor (EGFR) in the respiratory epithelium. Amphiregulin (AREG), an EGFR ligand, mediates tissue repair and wound healing in the lung epithelium. Omega-3 fatty acids such as docosahexaenoic acid (DHA) are also known modulators of repair and resolution of inflammatory injury. This study investigated how AREG, DHA, and EGFR modulate lung repair processes following dust-induced injury. Primary human bronchial epithelial (BEC) and BEAS-2B cells were treated with an aqueous extract of swine confinement facility dust (DE) in the presence of DHA and AREG or EGFR inhibitors. Mice were exposed to DE intranasally with or without EGFR inhibition and DHA. Using a decellularized lung scaffolding tissue repair model, BEC recolonization of human lung scaffolds was analyzed in the context of DE, DHA, and AREG treatments. Through these investigations, we identified an important role for AREG in mediating BEC repair processes. DE-induced AREG release from BEC, and DHA treatment following DE exposure, enhanced this release. Both DHA and AREG also enhanced BEC repair capacities and rescued DE-induced recellularization deficits. In vivo, DHA treatment enhanced AREG production following DE exposure, whereas EGFR inhibitor-treated mice exhibited reduced AREG in their lung homogenates. These data indicate a role for AREG in the process of tissue repair after inflammatory lung injury caused by environmental dust exposure and implicate a role for DHA in regulating AREG-mediated repair signaling in BEC.


Subject(s)
Amphiregulin/metabolism , Bronchi/cytology , Docosahexaenoic Acids/pharmacology , Dust/analysis , Environmental Exposure/adverse effects , Epithelial Cells/cytology , Lung Injury/prevention & control , Animals , Bronchi/drug effects , Bronchi/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , ErbB Receptors/metabolism , Humans , Lung Injury/etiology , Lung Injury/metabolism , Lung Injury/pathology , Male , Mice , Mice, Inbred C57BL , Signal Transduction , Swine
7.
World J Cardiol ; 8(10): 584-589, 2016 Oct 26.
Article in English | MEDLINE | ID: mdl-27847559

ABSTRACT

AIM: To evaluate the effect of norepinephrine on inflammatory cytokine expression in ex vivo human monocytes and monocytic THP-1 cells. METHODS: For human monocyte studies, cells were isolated from 12 chronic heart failure (HF) (66 ± 12 years, New York Heart Association functional class III-IV, left ventricular ejection fraction 22% ± 9%) and 14 healthy subjects (66 ± 12 years). Monocytes (1 × 106/mL) were incubated with lipopolysaccharide (LPS) 100 ng/mL, LPS + norepinephrine (NE) 10-6 mol/L or neither (control) for 4 h. Tumor necrosis factor-alpha (TNFα) and interleukin-10 (IL-10) production were determined by ELISA. Relative contribution of α- and ß-adrenergic receptor subtypes on immunomodulatory activity of NE was assessed in LPS-stimulated THP-1 cells incubated with NE, the α-selective agonist phenylephrine (PE), and the ß-selective agonist isoproterenol (IPN). NE-pretreated THP-1 cells were also co-incubated with the ß-selective antagonist propranolol (PROP), α2-selective antagonist yohimbine (YOH) or the α1-selective antagonist prazosin (PRAZ). RESULTS: Basal TNFα concentrations were higher in HF vs healthy subjects (6.3 ± 3.3 pg/mL vs 2.5 ± 2.6 pg/mL, P = 0.004). Norepinephrine's effect on TNFα production was reduced in HF (-41% ± 17% HF vs -57% ± 9% healthy, P = 0.01), and proportionately with NYHA FC. Increases in IL-10 production by NE was also attenuated in HF (16% ± 18% HF vs 38% ± 23% healthy, P = 0.012). In THP-1 cells, NE and IPN, but not PE, induced a dose-dependent suppression of TNFα. Co-incubation with NE and antagonists revealed a dose-dependent inhibition of the NE suppression of TNFα by PROP, but not by YOH or PRAZ. Dose-dependent increases in IL-10 production were seen with NE and IPN, but not with PE. This effect was also antagonized by PROP but not by YOH or PRAZ. Pretreatment of cells with IPN attenuated the effects of NE and IPN, but did not induce a response to PE. CONCLUSION: NE regulation of monocyte inflammatory cytokine production may be reduced in moderate-severe HF, and may be mediated through ß-adrenergic receptors.

8.
Respir Res ; 17(1): 103, 2016 08 22.
Article in English | MEDLINE | ID: mdl-27549302

ABSTRACT

BACKGROUND: Pirfenidone was recently approved for treatment of idiopathic pulmonary fibrosis. However, the therapeutic dose of pirfenidone is very high, causing side effects that limit its doses and therapeutic effectiveness. Understanding the molecular mechanisms of action of pirfenidone could improve its safety and efficacy. Because activated fibroblasts are critical effector cells associated with the progression of fibrosis, this study investigated the genes that change expression rapidly in response to pirfenidone treatment of pulmonary fibroblasts and explored their contributions to the anti-fibrotic effects of pirfenidone. METHODS: We used the GeneChip microarray to screen for genes that were rapidly up-regulated upon exposure of human lung fibroblast cells to pirfenidone, with confirmation for specific genes by real-time PCR and western blots. Biochemical and functional analyses were used to establish their anti-fibrotic effects in cellular and animal models of pulmonary fibrosis. RESULTS: We identified Regulator of G-protein Signaling 2 (RGS2) as an early pirfenidone-induced gene. Treatment with pirfenidone significantly increased RGS2 mRNA and protein expression in both a human fetal lung fibroblast cell line and primary pulmonary fibroblasts isolated from patients without or with idiopathic pulmonary fibrosis. Pirfenidone treatment or direct overexpression of recombinant RGS2 in human lung fibroblasts inhibited the profibrotic effects of thrombin, whereas loss of RGS2 exacerbated bleomycin-induced pulmonary fibrosis and mortality in mice. Pirfenidone treatment reduced bleomycin-induced pulmonary fibrosis in wild-type but not RGS2 knockout mice. CONCLUSIONS: Endogenous RGS2 exhibits anti-fibrotic functions. Upregulated RGS2 contributes significantly to the anti-fibrotic effects of pirfenidone.


Subject(s)
Fibroblasts/drug effects , Idiopathic Pulmonary Fibrosis/drug therapy , Lung/drug effects , Pyridones/pharmacology , RGS Proteins/metabolism , Animals , Bleomycin , Calcium Signaling/drug effects , Cell Line , Cell Proliferation/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Profiling/methods , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lung/metabolism , Lung/pathology , Mice, Inbred C57BL , Mice, Knockout , Oligonucleotide Array Sequence Analysis , RGS Proteins/deficiency , RGS Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Thrombin/pharmacology , Time Factors , Transfection , Up-Regulation
9.
Am J Physiol Lung Cell Mol Physiol ; 311(1): L101-10, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27190062

ABSTRACT

Agricultural dust exposure results in significant lung inflammation, and individuals working in concentrated animal feeding operations (CAFOs) are at risk for chronic airway inflammatory diseases. Exposure of bronchial epithelial cells to aqueous extracts of hog CAFO dusts (HDE) leads to inflammatory cytokine production that is driven by protein kinase C (PKC) activation. cAMP-dependent protein kinase (PKA)-activating agents can inhibit PKC activation in epithelial cells, leading to reduced inflammatory cytokine production following HDE exposure. ß2-Adrenergic receptor agonists (ß2-agonists) activate PKA, and we hypothesized that ß2-agonists would beneficially impact HDE-induced adverse airway inflammatory consequences. Bronchial epithelial cells were cultured with the short-acting ß2-agonist salbutamol or the long-acting ß2-agonist salmeterol prior to stimulation with HDE. ß2-Agonist treatment significantly increased PKA activation and significantly decreased HDE-stimulated IL-6 and IL-8 production in a concentration- and time-dependent manner. Salbutamol treatment significantly reduced HDE-induced intracellular adhesion molecule-1 expression and neutrophil adhesion to epithelial cells. Using an established intranasal inhalation exposure model, we found that salbutamol pretreatment reduced airway neutrophil influx and IL-6, TNF-α, CXCL1, and CXCL2 release in bronchoalveolar lavage fluid following a one-time exposure to HDE. Likewise, when mice were pretreated daily with salbutamol prior to HDE exposure for 3 wk, HDE-induced neutrophil influx and inflammatory mediator production were also reduced. The severity of HDE-induced lung pathology in mice repetitively exposed to HDE for 3 wk was also decreased with daily salbutamol pretreatment. Together, these results support the need for future clinical investigations to evaluate the utility of ß2-agonist therapies in the treatment of airway inflammation associated with CAFO dust exposure.


Subject(s)
Adrenergic beta-2 Receptor Agonists/pharmacology , Air Pollutants/toxicity , Albuterol/pharmacology , Pneumonia/drug therapy , Salmeterol Xinafoate/pharmacology , Animals , Cell Line , Cytokines/metabolism , Drug Evaluation, Preclinical , Dust , Humans , Male , Mice , Mice, Inbred C57BL , Pneumonia/etiology , Pneumonia/immunology , Respiratory Mucosa/drug effects , Respiratory Mucosa/pathology
10.
Am J Physiol Lung Cell Mol Physiol ; 309(4): L388-99, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26092994

ABSTRACT

Workers exposed to aerosolized dust present in concentrated animal feeding operations (CAFOs) are susceptible to inflammatory lung diseases, such as chronic obstructive pulmonary disease. Extracts of dust collected from hog CAFOs [hog dust extract (HDE)] are potent stimulators of lung inflammatory responses in several model systems. The observation that HDE contains active proteases prompted the present study, which evaluated the role of CAFO dust proteases in lung inflammatory processes and tested whether protease-activated receptors (PARs) are involved in the signaling pathway for these events. We hypothesized that the damaging proinflammatory effect of HDE is due, in part, to the proteolytic activation of PARs, and inhibiting the proteases in HDE or disrupting PAR activation would attenuate HDE-mediated inflammatory indexes in bronchial epithelial cells (BECs), in mouse lung slices in vitro, and in a murine in vivo exposure model. Human BECs and mouse lung slice cultures stimulated with 5% HDE released significantly more of each of the cytokines measured (IL-6, IL-8, TNF-α, keratinocyte-derived chemokine/CXC chemokine ligand 1, and macrophage inflammatory protein-2/CXC chemokine ligand 2) than controls, and these effects were markedly diminished by protease inhibition. Inhibition of PARs also blunted the HDE-induced cytokine release from BECs. In addition, protease depletion inhibited HDE-induced BEC intracellular PKCα and PKCε activation. C57BL/6J mice administered 12.5% HDE intranasally, either once or daily for 3 wk, exhibited increased total cellular and neutrophil influx, bronchial alveolar fluid inflammatory cytokines, lung histopathology, and inflammatory scores compared with mice receiving protease-depleted HDE. These data suggest that proteases in dust from CAFOs are important mediators of lung inflammation, and these proteases and their receptors may provide novel targets for therapeutic intervention in CAFO dust-induced airways disease.


Subject(s)
Agricultural Workers' Diseases/immunology , Peptide Hydrolases/immunology , Pneumonia/immunology , Receptor, PAR-1/metabolism , Receptor, PAR-2/metabolism , Air Pollutants, Occupational/immunology , Animal Feed , Animals , Bronchi/pathology , Cell Line , Cytokines/metabolism , Dust/immunology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Humans , Male , Mice, Inbred C57BL , Occupational Exposure , Protein Kinase C/metabolism , Swine
11.
Article in English | MEDLINE | ID: mdl-25460827

ABSTRACT

Epithelial-mesenchymal transition (EMT) is critical for embryonic development, and this process is recapitulated in adults during wound healing, tissue regeneration, fibrosis and cancer progression. Cell migration is believed to play a key role in both normal wound repair and in abnormal tissue remodeling. Prostaglandin E2 (PGE2) inhibits fibroblast chemotaxis, but stimulates chemotaxis in airway epithelial cells. The current study was designed to explore the role of PGE2 and its four receptors on airway epithelial cell migration following EMT using both the Boyden blindwell chamber chemotaxis assay and the wound closure assay. EMT in human bronchial epithelial cells (HBECs) was induced by TGF-ß1 and a mixture of cytokines (IL-1ß, TNF-α, and IFN-γ). PGE2 and selective agonists for all four EP receptors stimulated chemotaxis and wound closure in HBECs. Following EMT, the EP1 and EP3 agonists were without effect, while the EP2 and EP4 agonists inhibited chemotaxis as did PGE2. The effects of the EP2 and EP4 receptors on HBEC and EMT cell migration were further confirmed by blocking the expected signaling pathways. Taken together, these results demonstrate that PGE2 switches from a stimulator to an inhibitor of cell migration following EMT of airway epithelial cells and that this inhibition is mediated by an altered effect of EP2 and EP4 signaling and an apparent loss of the stimulatory effects of EP1 and EP3. Change in the PGE2 modulation of chemotaxis may play a role in repair following injury.


Subject(s)
Cell Movement/drug effects , Dinoprostone/pharmacology , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/drug effects , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Cell Line , Cytokines/metabolism , Epithelial Cells/cytology , Humans
12.
Am J Respir Cell Mol Biol ; 53(1): 42-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25368964

ABSTRACT

G protein-coupled receptors (GPCRs) are important regulators of cell functions in asthma. We recently reported that regulator of G-protein signaling (RGS) 2, a selective modulator of Gq-coupled GPCRs, is a key regulator of airway hyper-responsiveness (AHR), the pathophysiologic hallmark of asthma. Because RGS2 protein levels in airway cells were significantly lower in patients with asthma compared with patients without asthma, we further investigated the potential pathological importance of RGS2 repression in asthma. The human RGS2 gene maps to chromosome 1q31. We first screened patients with asthma for RGS2 gene promoter single-nucleotide polymorphisms (SNPs) and found significant differences in the distribution of two RGS2 SNPs (A638G, rs2746071 and C395G, rs2746072) between patients with asthma and nonasthmatic subjects. These two SNPs are always associated with each other and have the same higher prevalence in patients with asthma (65%) as compared with nonasthmatic subjects (35%). Point mutations corresponding to these SNPs decrease RGS2 promoter activity by 44%. The importance of RGS2 down-regulation was then determined in an acute IL-13 mouse model of asthma. Intranasal administration of IL-13 in mice also decreased RGS2 expression in lungs by ∼50% and caused AHR. Although naive RGS2 knockout (KO) mice exhibit spontaneous AHR, acute IL-13 exposure further increased AHR in RGS2 KO mice. Loss of RGS2 also significantly enhanced IL-13-induced mouse airway remodeling, including peribronchial smooth muscle thickening and fibrosis, without effects on goblet cell hyperplasia or airway inflammation in mice. Thus, genetic variations and increased inflammatory cytokines can lead to RGS2 repression, which exacerbates AHR and airway remodeling in asthma.


Subject(s)
Asthma/genetics , Asthma/metabolism , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , RGS Proteins , Airway Remodeling , Animals , Asthma/chemically induced , Asthma/pathology , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 1/metabolism , Disease Models, Animal , Female , Humans , Interleukin-13/toxicity , Male , Mice , Mice, Knockout , Muscle, Smooth/metabolism , Muscle, Smooth/pathology , RGS Proteins/genetics , RGS Proteins/metabolism
13.
Am J Physiol Renal Physiol ; 308(2): F131-9, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25377915

ABSTRACT

Treating chronic kidney disease (CKD) has been challenging because of its pathogenic complexity. Epoxyeicosatrienoic acids (EETs) are cytochrome P-450-dependent derivatives of arachidonic acid with antihypertensive, anti-inflammatory, and profibrinolytic functions. We recently reported that genetic ablation of soluble epoxide hydrolase (sEH), an enzyme that converts EETs to less active dihydroxyeicosatrienoic acids, prevents renal tubulointerstitial fibrosis and inflammation in experimental mouse models of CKD. Here, we tested the hypothesis that pharmacological inhibition of sEH after unilateral ureteral obstruction (UUO) would attenuate tubulointerstitial fibrosis and inflammation in mouse kidneys and may provide a novel approach to manage the progression of CKD. Inhibition of sEH enhanced levels of EET regioisomers and abolished tubulointerstitial fibrosis, as demonstrated by reduced collagen deposition and myofibroblast formation after UUO. The inflammatory response was also attenuated, as demonstrated by decreased influx of neutrophils and macrophages and decreased expression of inflammatory cytokines keratinocyte chemoattractant, macrophage inflammatory protein-2, monocyte chemotactic protein-1, TNF-α, and ICAM-1 in kidneys after UUO. UUO upregulated transforming growth factor-ß1/Smad3 signaling and induced NF-κB activation, oxidative stress, tubular injury, and apoptosis; in contrast, it downregulated antifibrotic factors, including peroxisome proliferator-activated receptor (PPAR) isoforms, especially PPAR-γ. sEH inhibition mitigated the aforementioned malevolent effects in UUO kidneys. These data demonstrate that pharmacological inhibition of sEH promotes anti-inflammatory and fibroprotective effects in UUO kidneys by preventing tubular injury, downregulation of NF-κB, transforming growth factor-ß1/Smad3, and inflammatory signaling pathways, and activation of PPAR isoforms. Our data suggest the potential use of sEH inhibitors in treating fibrogenesis in the UUO model of CKD.


Subject(s)
Arachidonic Acids/metabolism , Benzoates/therapeutic use , Epoxide Hydrolases/antagonists & inhibitors , Nephrosclerosis/prevention & control , Phenylurea Compounds/therapeutic use , Renal Insufficiency, Chronic/prevention & control , Animals , Benzoates/pharmacology , Blood Pressure/drug effects , Cell Death/drug effects , Drug Evaluation, Preclinical , Male , Mice, Inbred C57BL , Nephrosclerosis/etiology , Nephrosclerosis/metabolism , Oxidative Stress/drug effects , Peroxisome Proliferator-Activated Receptors/metabolism , Phenylurea Compounds/pharmacology , Renal Circulation/drug effects , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/metabolism , Ureteral Obstruction/complications
14.
Int J Biochem Cell Biol ; 57: 123-34, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25449262

ABSTRACT

Members of the casitas B-lineage lymphoma (Cbl) family (Cbl, Cbl-b and Cbl-c) of ubiquitin ligases serve as negative regulators of receptor tyrosine kinases (RTKs). An essential role of Cbl-family protein-dependent ubiquitination for efficient ligand-induced lysosomal targeting and degradation is now well-accepted. However, a more proximal role of Cbl and Cbl-b as adapters for CIN85-endophilin recruitment to mediate ligand-induced initial internalization of RTKs is supported by some studies but refuted by others. Overexpression and/or incomplete depletion of Cbl proteins in these studies is likely to have contributed to this dichotomy. To address the role of endogenous Cbl and Cbl-b in the internalization step of RTK endocytic traffic, we established Cbl/Cbl-b double-knockout (DKO) mouse embryonic fibroblasts (MEFs) and demonstrated that these cells lack the expression of both Cbl-family members as well as endophilin A, while they express CIN85. We show that ligand-induced ubiquitination of EGFR, as a prototype RTK, was abolished in DKO MEFs, and EGFR degradation was delayed. These traits were reversed by ectopic human Cbl expression. EGFR endocytosis, assessed using the internalization of (125)I-labeled or fluorescent EGF, or of EGFR itself, was largely retained in Cbl/Cbl-b DKO compared to wild type MEFs. EGFR internalization was also largely intact in Cbl/Cbl-b depleted MCF-10A human mammary epithelial cell line. Inducible shRNA-mediated knockdown of CIN85 in wild type or Cbl/Cbl-b DKO MEFs had no impact on EGFR internalization. Our findings, establish that, at physiological expression levels, Cbl, Cbl-b and CIN85 are largely dispensable for EGFR internalization. Our results support the model that Cbl-CIN85-endophilin complex is not required for efficient internalization of EGFR, a prototype RTK.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , ErbB Receptors/metabolism , Neoplasm Proteins/metabolism , Nerve Tissue Proteins/metabolism , Proto-Oncogene Proteins c-cbl/metabolism , Animals , Cell Line , Endocytosis , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Transfection
15.
Biochem Pharmacol ; 87(1): 25-39, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-23933389

ABSTRACT

The application of detailed quantitative analyses of the concentration dependence of the biological responses mediated by endogenous hormones and other mediators, drugs, and related compounds has been the foundation of pharmacology for the past century or more. This approach has been remarkably successful in identifying the specific molecular targets for these mediators and drugs, in establishing the mechanisms for those effects at both the cellular and whole organismal levels, and in the development of new chemical entities (NCEs) with great selectivity for individual molecular targets. The availability of such compounds has unfortunately led to a mindset that detailed quantitative analyses are no longer necessary to use such compounds in understanding biological system function and to draw valid conclusions in regard to the utility of NCEs selective for putative drug targets in the potential treatment of human disease states. This lack of appreciation for quantitative approaches has contributed significantly to the all-too-frequent failures of new drug candidates in early-stage clinical trials. The present article reviews basic drug/receptor concepts together with the mathematical relationships that underlie the quantitative analysis of dose-response and concentration-effect relationships for individual compounds and for more complex systems, such as the comparative analysis of multiple compounds at a single receptor. A thorough understanding of these concepts and their associated analyses, along with their proper and rigorous application in all pre-clinical drug development studies, is an essential component of an integrated approach toward improving drug development.


Subject(s)
Models, Chemical , Pharmaceutical Preparations/metabolism , Receptors, Cell Surface/metabolism , Animals , Dose-Response Relationship, Drug , Humans , Pharmaceutical Preparations/chemistry , Quantitative Structure-Activity Relationship , Receptors, Cell Surface/chemistry
16.
Biochem Pharmacol ; 87(1): 64-77, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24269285

ABSTRACT

A pharmacological experiment is typically conducted to: i) test or expand a hypothesis regarding the potential role of a target in the mechanism(s) underlying a disease state using an existing drug or tool compound in normal and/or diseased tissue or animals; or ii) characterize and optimize a new chemical entity (NCE) targeted to modulate a specific disease-associated target to restore homeostasis as a potential drug candidate. Hypothesis testing necessitates an intellectually rigorous, null hypothesis approach that is distinct from a high throughput fishing expedition in search of a hypothesis. In conducting an experiment, the protocol should be transparently defined along with its powering, design, appropriate statistical analysis and consideration of the anticipated outcome (s) before it is initiated. Compound-target interactions often involve the direct study of phenotype(s) unique to the target at the cell, tissue or animal/human level. However, in vivo studies are often compromised by a lack of sufficient information on the compound pharmacokinetics necessary to ensure target engagement and also by the context-free analysis of ubiquitous cellular signaling pathways downstream from the target. The use of single tool compounds/drugs at one concentration in engineered cell lines frequently results in reductionistic data that have no physiologically relevance. This overview, focused on trends in the peer-reviewed literature, discusses the execution and reporting of experiments and the criteria recommended for the physiologically-relevant assessment of target engagement to identify viable new drug targets and facilitate the advancement of translational studies.


Subject(s)
Drug Delivery Systems/methods , Drug Delivery Systems/trends , Drug Discovery/methods , Drug Discovery/trends , Pharmaceutical Preparations/administration & dosage , Animals , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/trends , High-Throughput Screening Assays , Humans , Pharmaceutical Preparations/metabolism , Protein Binding/genetics , Protein Binding/physiology
17.
Am J Respir Cell Mol Biol ; 49(4): 571-81, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23656623

ABSTRACT

Lung fibroblasts are believed to be a major source of vascular endothelial growth factor (VEGF), which supports the survival of lung endothelial cells and modulates the maintenance of the pulmonary microvasculature. VEGF has been related to the pathogenesis of lung diseases, including chronic obstructive pulmonary disease (COPD). Prostaglandin E2 (PGE2) stimulates VEGF production from lung fibroblasts via the E-prostanoid (EP)-2 receptor. The EP2 signaling pathway uses cyclic adenosine monophosphate (cAMP) as a second messenger, and cAMP is degraded by phosphodiesterases (PDEs). This study investigates whether phosphodiesterase inhibition modulates the human lung fibroblast VEGF production induced by PGE2. Human fetal lung fibroblasts were cultured with PGE2 and PDE inhibitors. The PDE4 inhibitors roflumilast, roflumilast N-oxide, and rolipram with PGE2 increased VEGF release, as quantified in supernatant media by ELISA. In contrast, PDE3, PDE5, and PDE7 inhibitors did not affect VEGF release. Roflumilast increased VEGF release with either an EP2 or an EP4 agonist. Roflumilast augmented the cytosolic cAMP levels induced by PGE2 and VEGF release with other agents that use the cAMP signaling pathway. Roflumilast-augmented VEGF release was completely inhibited by a protein kinase A (PKA) inhibitor. Roflumilast with PGE2 increased VEGF mRNA levels, and the blockade of mRNA synthesis inhibited the augmented VEGF release. The stimulatory effect of roflumilast on VEGF release was replicated using primary healthy and COPD lung fibroblasts. These findings demonstrate that PDE4 inhibition can modulate human lung fibroblast VEGF release by PGE2 acting through the EP2 and EP4 receptor-cAMP/PKA signaling pathway. Through this action, PDE4 inhibitors such as roflumilast could contribute to the survival of lung endothelial cells.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Dinoprostone/pharmacology , Lung/drug effects , Lung/metabolism , Phosphodiesterase 4 Inhibitors/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Aminopyridines/pharmacology , Benzamides/pharmacology , Cells, Cultured , Cyclic AMP/genetics , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclopropanes/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Lung/cytology , Pulmonary Disease, Chronic Obstructive/metabolism , RNA, Messenger/genetics , Receptors, Prostaglandin E, EP2 Subtype/genetics , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Signal Transduction/drug effects , Vascular Endothelial Growth Factor A/genetics
18.
J Inflamm Res ; 6: 25-33, 2013.
Article in English | MEDLINE | ID: mdl-23576875

ABSTRACT

BACKGROUND: The balance between production and degradation of extracellular matrix is crucial in maintaining normal tissue structure. This study was designed to investigate the effect of budesonide on fibroblast-mediated tissue repair and remodeling. METHODS: Using human fetal lung fibroblasts in a three-dimensional collagen gel culture system, we investigated the effect of budesonide (1-1000 nM) on collagen gel contraction and degradation in the presence or absence of Inflammatory cytokines (interleukin-1ß and tumor necrosis factor α; 5 ng/mL each) and, in order to activate latent proteases, serine protease trypsin 0.25 µg/mL. The effects of budesonide on metalloproteinase production and activation were also investigated. RESULTS: Inflammatory cytokines significantly inhibited collagen gel contraction mediated by lung fibroblasts. Budesonide counteracted the effect of cytokines in a concentration-dependent manner (to 50%, P < 0.01). Budesonide 100 nM almost completely inhibited the release and mRNA expression of metalloproteinase-1, metalloproteinase-3, and metalloproteinase-9 induced by the cytokines (P< 0.05). Exposure to the cytokines plus trypsin increased collagen degradation and conversion of the metalloproteinases to lower molecular weight forms corresponding to their active forms. Budesonide blocked both enhanced collagen degradation (P< 0.01) and suppressed trypsin-mediated conversion of cytokine-induced metalloproteinase-9 and metalloproteinase-3 to lower molecular weight forms. Similar effects were observed with dexamethasone 1 µM, suggesting a class effect. CONCLUSION: These findings demonstrate that budesonide directly modulates contraction of collagen gels and can decrease collagen degradation under Inflammatory conditions. The mechanism of this effect is through suppressing gene expression, release, and activation of metalloproteinases. By modulating the release and activity of metalloproteinases, inhaled budesonide may be able to modify airway tissue repair and remodeling.

19.
Biochem Pharmacol ; 85(10): 1454-62, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23500535

ABSTRACT

Metastasis is the major cause of breast cancer mortality. We recently reported that aberrant G-protein coupled receptor (GPCR) signaling promotes breast cancer metastasis by enhancing cancer cell migration and invasion. Phosphatidylinositol 3-kinase γ (PI3Kγ) is specifically activated by GPCRs. The goal of the present study was to determine the role of PI3Kγ in breast cancer cell migration and invasion. Immunohistochemical staining showed that the expression of PI3Kγ protein was significantly increased in invasive human breast carcinoma when compared to adjacent benign breast tissue or ductal carcinoma in situ. PI3Kγ was also detected in metastatic breast cancer cells, but not in normal breast epithelial cell line or in non-metastatic breast cancer cells. In contrast, PI3K isoforms α, ß and δ were ubiquitously expressed in these cell lines. Overexpression of recombinant PI3Kγ enhanced the metastatic ability of non-metastatic breast cancer cells. Conversely, migration and invasion of metastatic breast cancer cells were inhibited by a PI3Kγ inhibitor or by siRNA knockdown of PI3Kγ but not by inhibitors or siRNAs of PI3Kα or PI3Kß. Lamellipodia formation is a key step in cancer metastasis, and PI3Kγ blockade disrupted lamellipodia formation induced by the activation of GPCRs such as CXC chemokine receptor 4 and protease-activated receptor 1, but not by the epidermal growth factor tyrosine kinase receptor. Taken together, these results indicate that upregulated PI3Kγ conveys the metastatic signal initiated by GPCRs in breast cancer cells, and suggest that PI3Kγ may be a novel therapeutic target for development of chemotherapeutic agents to prevent breast cancer metastasis.


Subject(s)
Breast Neoplasms/genetics , Carcinoma, Ductal/genetics , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Carcinoma, Ductal/enzymology , Carcinoma, Ductal/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Class Ib Phosphatidylinositol 3-Kinase/genetics , Diffusion Chambers, Culture , Epithelial Cells/cytology , Female , Humans , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Pseudopodia/drug effects , Pseudopodia/pathology , RNA, Small Interfering/genetics , Receptor, PAR-1/genetics , Receptor, PAR-1/metabolism , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Signal Transduction/drug effects , Transfection
20.
J Appl Physiol (1985) ; 114(5): 665-74, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23288552

ABSTRACT

Individuals working in commercial hog confinement facilities have elevated incidences of headaches, depression, nausea, skeletal muscle weakness, fatigue, gastrointestinal disorders, and cardiovascular diseases, and the molecular mechanisms for these nonrespiratory ailments remain incompletely undefined. A common element underlying these diverse pathophysiologies is perturbation of intracellular Ca(2+) homeostasis. This study assessed whether the dust generated inside hog confinement facilities contains compounds that alter Ca(2+) mobilization via ryanodine receptors (RyRs), key intracellular channels responsible for mobilizing Ca(2+) from internal stores to elicit an array of physiologic functions. Hog barn dust (HBD) was extracted with phosphate-buffered saline, sterile-filtered (0.22 µm), and size-separated using Sephadex G-100 resin. Fractions (F) 1 through 9 (Mw >10,000 Da) had no measurable effects on RyR isoforms. However, F10 through F17, which contained compounds of Mw ≤2,000 Da, modulated the [(3)H]ryanodine binding to RyR1, RyR2, and RyR3 in a biphasic (Gaussian) manner. The Ki values for F13, the most potent fraction, were 3.8 ± 0.2 µg/ml for RyR1, 0.2 ± 0.01 µg/ml and 19.1 ± 2.8 µg/ml for RyR2 (two binding sites), and 44.9 ± 2.8 µg/ml and 501.6 ± 9.2 µg/ml for RyR3 (two binding sites). In lipid bilayer assays, F13 dose-dependently decreased the open probabilities of RyR1, RyR2, and RyR3. Pretreating differentiated mouse skeletal myotubes (C2C12 cells) with F13 blunted the amplitudes of ryanodine- and K(+)-induced Ca(2+) transients. Because RyRs are present in many cell types, impairment in Ca(2+) mobilization from internal stores via these channels is a possible mechanism by which HBD may trigger these seemingly unrelated pathophysiologies.


Subject(s)
Air Pollutants/metabolism , Calcium Channel Blockers/metabolism , Calcium/metabolism , Dust , Endoplasmic Reticulum/metabolism , Housing, Animal , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism , Animals , Binding Sites , Male , Mice , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Potassium/metabolism , Rabbits , Rats , Rats, Sprague-Dawley , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...