Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36551519

ABSTRACT

In the past, different bacterial species have been tested for cancer therapy in preclinical and clinical studies. The success of bacterial cancer therapy is mainly dependent on the ability of the utilized bacteria to overcome the host immune defense system to colonize the tumors and to initiate tumor-specific immunity. In recent years, several groups have demonstrated that the gut microbiome plays an important role of modulation of the host immune response and has an impact on therapeutic responses in murine models and in cohorts of human cancer patients. Here we analyzed the impact of the gut microbiome on tumor colonization and tumor therapy by the Escherichia coli Nissle 1917 (EcN) strain. This EcN strain is a promising cancer therapy candidate with probiotic properties. In our study, we observed significantly better tumor colonization by EcN after antibiotic-induced temporal depletion of the gut microbiome and after two intranasal applications of the EcN derivate (EcN/pMUT-gfp Knr) in 4T1 tumor-bearing syngeneic BALB/c mice. In addition, we demonstrated significant reduction in tumor growth and extended survival of the EcN-treated mice in contrast to phosphate-buffered saline (PBS)-treated tumor-bearing control animals. Multispectral imaging of immune cells revealed that depletion of the gut microbiome led to significantly lower infiltration of cytotoxic and helper T cells (CD4 and CD8 cells) in PBS tumors of mice pretreated with antibiotics in comparison with antibiotic untreated PBS-or EcN treated mice. These findings may help in the future advancement of cancer treatment strategies using E. coli Nissle 1917.

2.
Dis Model Mech ; 14(6)2021 06 01.
Article in English | MEDLINE | ID: mdl-34125184

ABSTRACT

Parkinson's disease (PD) provokes bradykinesia, resting tremor, rigidity and postural instability, and also non-motor symptoms such as depression, anxiety, sleep and cognitive impairments. Similar phenotypes can be induced in Drosophila melanogaster through modification of PD-relevant genes or the administration of PD-inducing toxins. Recent studies correlated deregulation of human p21-activated kinase 4 (PAK4) with PD, leaving open the question of a causative relationship of mutations in this gene for manifestation of PD symptoms. To determine whether flies lacking the PAK4 homolog Mushroom bodies tiny (Mbt) show PD-like phenotypes, we tested for a variety of PD criteria. Here, we demonstrate that mbt mutant flies show PD-like phenotypes including age-dependent movement deficits, reduced life expectancy and fragmented sleep. They also react to a stressful situation with higher immobility, indicating an influence of Mbt on emotional behavior. Loss of Mbt function has a negative effect on the number of dopaminergic protocerebral anterior medial (PAM) neurons, most likely caused by a proliferation defect of neural progenitors. The age-dependent movement deficits are not accompanied by a corresponding further loss of PAM neurons. Previous studies highlighted the importance of a small PAM subgroup for age-dependent PD motor impairments. We show that impaired motor skills are caused by a lack of Mbt in this PAM subgroup. In addition, a broader re-expression of Mbt in PAM neurons improves life expectancy. Conversely, selective Mbt knockout in the same cells shortens lifespan. We conclude that mutations in Mbt/PAK4 can play a causative role in the development of PD phenotypes.


Subject(s)
Parkinson Disease/genetics , Phenotype , p21-Activated Kinases/genetics , Animals , Drosophila/physiology , Gene Knockdown Techniques , Life Expectancy , Motor Activity/genetics , Neurons/physiology , Sleep/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...