Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
APL Bioeng ; 7(2): 026105, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37229215

ABSTRACT

Type 1 diabetes (T1D) is a chronic autoimmune disease featured by the loss of beta cell function and the need for lifetime insulin replacement. Over the recent decade, the use of automated insulin delivery systems (AID) has shifted the paradigm of treatment: the availability of continuous subcutaneous (SC) glucose sensors to guide SC insulin delivery through a control algorithm has allowed, for the first time, to reduce the daily burden of the disease as well as to abate the risk for hypoglycemia. AID use is still limited by individual acceptance, local availability, coverage, and expertise. A major drawback of SC insulin delivery is the need for meal announcement and the peripheral hyperinsulinemia that, over time, contributes to macrovascular complications. Inpatient trials using intraperitoneal (IP) insulin pumps have demonstrated that glycemic control can be improved without meal announcement due to the faster insulin delivery through the peritoneal space. This calls for novel control algorithms able to account for the specificities of IP insulin kinetics. Recently, our group described a two-compartment model of IP insulin kinetics demonstrating that the peritoneal space acts as a virtual compartment and IP insulin delivery is virtually intraportal (intrahepatic), thus closely mimicking the physiology of insulin secretion. The FDA-accepted T1D simulator for SC insulin delivery and sensing has been updated for IP insulin delivery and sensing. Herein, we design and validate-in silico-a time-varying proportional integrative derivative controller to guide IP insulin delivery in a fully closed-loop mode without meal announcement.

2.
J Clin Med ; 12(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36983097

ABSTRACT

Managing Elderly type 2 diabetes (E-T2D) is challenging due to geriatric conditions (e.g., co-morbidity, multiple drug intake, etc.), and personalization becomes paramount for precision medicine. This paper presents a human digital twin (HDT) framework to manage E-T2D that exploits various patient-specific data and builds a suite of models exploiting the data for prediction and management to personalize diabetes treatment in E-T2D patients. These models include mathematical and deep-learning ones that capture different patient aspects. Consequently, the HDT virtualizes the patient from different viewpoints using an HDT that mimics the patient and has interfaces to update the virtual models simultaneously from measurements. Using these models the HDT obtains deeper insights about the patient. Further, an adaptive patient model fusing this information and a learning-based model predictive control (LB-MPC) algorithm are proposed. The geriatric conditions are captured as model parameters and constraints while solving the LB-MPC to personalize the insulin infusion for E-T2D management. The HDT is deployed on and illustrated with 15 patients using clinical trials and simulations. Our results show that HDT helps improve the time-in-range from 3-75% to 86-97% and reduces insulin infusion by 14-29%.

3.
J Diabetes Sci Technol ; 17(3): 751-756, 2023 05.
Article in English | MEDLINE | ID: mdl-35144503

ABSTRACT

BACKGROUND: Intraperitoneal insulin delivery has proven to safely overcome a major limit of subcutaneous delivery-meal announcement-and has been able to optimize glycemic control in adults under controlled experimental conditions. In addition, intraperitoneal delivery avoids peripheral hyperinsulinemia resulting from the subcutaneous route and restores a physiological liver gradient. METHODS: Relying on a unique data set of intraperitoneal closed-loop insulin delivery obtained with a Model Predictive Controller (MPC), we develop a compartmental model of intraperitoneal insulin kinetics, which, once included in the UVa/Padova T1D simulator, will facilitate the investigation of various control strategies, for example, the simpler Proportional Integral Derivative controller versus MPC. RESULTS: Intraperitoneal insulin kinetics can be described with a 2-compartment model including liver and plasma. CONCLUSION: Intraperitoneal insulin transit is fast enough to render irrelevant the addition of a peritoneal compartment, proving the peritoneum being a virtual-not actual-transit space for insulin delivery.


Subject(s)
Diabetes Mellitus, Type 1 , Pancreas, Artificial , Adult , Humans , Insulin/therapeutic use , Hypoglycemic Agents/therapeutic use , Blood Glucose , Epidemiological Models , Insulin Infusion Systems , Algorithms , Insulin, Regular, Human/therapeutic use
5.
Nanomedicine (Lond) ; 15(23): 2271-2285, 2020 08.
Article in English | MEDLINE | ID: mdl-32914689

ABSTRACT

Aim: We investigated the use of cellulose nanocrystals (CNCs) as drug nanocarriers combining an anti-osteoporotic agent, alendronate (ALN), and an anti-cancer drug, doxorubicin (DOX). Materials & methods: CNC physicochemical characterization, in vivo imaging coupled with histology and in vitro uptake and toxicity assays were carried out. Results:In vivo CNC-ALN did not modify bone tropism and lung penetration, whereas its liver and kidney accumulation was slightly higher compared with CNCs alone. In vitro studies showed that CNC-ALN did not impair ALN's effect on osteoclasts, whereas CNC-DOX confirmed the therapeutic potential against bone metastatic cancer cells. Conclusions: This study provides robust proof of the potential of CNCs as easy, flexible and specific carriers to deliver compounds to the bone.


Subject(s)
Nanoparticles , Pharmaceutical Preparations , Cellulose , Doxorubicin/pharmacology , Drug Delivery Systems
6.
Diabetes Technol Ther ; 22(2): 112-120, 2020 02.
Article in English | MEDLINE | ID: mdl-31769699

ABSTRACT

Objective: Safety data on Do-It-Yourself Artificial Pancreas Systems are missing. The most widespread in Europe is the AndroidAPS implementation of the OpenAPS algorithm. We used the UVA/Padova Type 1 Diabetes Simulator to in silico test safety and efficacy of this algorithm in different scenarios. Methods: We tested five configurations of the AndroidAPS algorithm differing in aggressiveness and patient's interaction with the system. All configurations were tested with insulin sensitivity variation of ±30%. The most promising configurations were tested in real-life scenarios: over- and underestimated bolus by 50%, bolus delivered 15 min before meal, and late bolus delivered 15 min after meal. Continuous Glucose Monitoring (CGM) time in ranges (TIRs) metrics were used to assess the glycemic control. Results: In silico testing showed that open-source closed-loop system AndroidAPS works effectively and safely. The best results were reached if AndroidAPS algorithm worked with microboluses and when half of calculated bolus was issued (mean glycemia 131 mg/dL, SD 27 mg/dL, TIR 91%, time between 54 and 70 mg/dL <1%, and low blood glucose index even <1). The meal bolus over- and underestimation as well as late bolus did not affect the TIR and, importantly, the time between 54 and 70 mg/dL. Conclusion: In silico testing proved that AndroidAPS implementation of the OpenAPS algorithm is safe and effective, and it showed a great potential to be tested in prospective home setting study.


Subject(s)
Blood Glucose/analysis , Computer Simulation , Diabetes Mellitus, Type 1/blood , Materials Testing/methods , Pancreas, Artificial , Algorithms , Diabetes Mellitus, Type 1/drug therapy , Equipment Safety , Humans , Insulin Infusion Systems , Insulin Resistance , Meals , Time Factors
7.
J Diabetes Sci Technol ; 13(6): 1008-1016, 2019 11.
Article in English | MEDLINE | ID: mdl-31645119

ABSTRACT

BACKGROUND: The objective of this research is to show the effectiveness of individualized hypoglycemia predictive alerts (IHPAs) based on patient-tailored glucose-insulin models (PTMs) for different subjects. Interpatient variability calls for PTMs that have been identified from data collected in free-living conditions during a one-month trial. METHODS: A new impulse-response (IR) identification technique has been applied to free-living data in order to identify PTMs that are able to predict the future glucose trends and prevent hypoglycemia events. Impulse response has been applied to seven patients with type 1 diabetes (T1D) of the University of Amsterdam Medical Centre. Individualized hypoglycemia predictive alert has been designed for each patient thanks to the good prediction capabilities of PTMs. RESULTS: The PTMs performance is evaluated in terms of index of fitting (FIT), coefficient of determination, and Pearson's correlation coefficient with a population FIT of 63.74%. The IHPAs are evaluated on seven patients with T1D with the aim of predicting in advance (between 45 and 10 minutes) the unavoidable hypoglycemia events; these systems show better performance in terms of sensitivity, precision, and accuracy with respect to previously published results. CONCLUSION: The proposed work shows the successful results obtained applying the IR to an entire set of patients, participants of a one-month trial. Individualized hypoglycemia predictive alerts are evaluated in terms of hypoglycemia prevention: the use of a PTM allows to detect 84.67% of the hypoglycemia events occurred during a one-month trial on average with less than 0.4% of false alarms. The promising prediction capabilities of PTMs can be a key ingredient for new generations of individualized model predictive control for artificial pancreas.


Subject(s)
Blood Glucose/analysis , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemia/prevention & control , Hypoglycemic Agents/adverse effects , Insulin/adverse effects , Models, Biological , Pancreas, Artificial , Algorithms , Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 1/blood , Humans , Hypoglycemia/chemically induced , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use
8.
ACS Nano ; 13(4): 4410-4423, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30883091

ABSTRACT

Steroids are the standard therapy for autoimmune hepatitis (AIH) but the long-lasting administration is hampered by severe side effects. Methods to improve the tropism of the drug toward the liver are therefore required. Among them, conjugation to nanoparticles represents one possible strategy. In this study, we exploited the natural liver tropism of Avidin-Nucleic-Acid-Nano-Assemblies (ANANAS) to carry dexamethasone selectively to the liver in an AIH animal model. An acid-labile biotin-hydrazone linker was developed for reversible dexamethasone loading onto ANANAS. The biodistribution, pharmacokinetics and efficacy of free and ANANAS-linked dexamethasone (ANANAS-Hz-Dex) in healthy and AIH mice were investigated upon intraperitoneal administration. In ANANAS-treated animals, the free drug was detected only in the liver. Super-resolution microscopy showed that nanoparticles segregate inside lysosomes of liver immunocompetent cells, mainly involved in AIH progression. In agreement with these observational results, chronic low-dose treatment with ANANAS-Hz-Dex reduced the expression of liver inflammation markers and, in contrast to the free drug, also the levels of circulating AIH-specific autoantibodies. These data suggest that the ANANAS carrier attenuates AIH-related liver damage without drug accumulation in off-site tissues. The safety and biodegradability of the ANANAS carrier make this formulation a promising tool for the treatment of autoimmune liver disorders.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Avidin/chemistry , Dexamethasone/administration & dosage , Drug Delivery Systems , Hepatitis, Autoimmune/drug therapy , Nucleic Acids/chemistry , Animals , Anti-Inflammatory Agents/therapeutic use , Dexamethasone/therapeutic use , Disease Models, Animal , Drug Carriers/chemistry , Hydrogen-Ion Concentration , Male , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry
9.
Comput Methods Programs Biomed ; 171: 133-140, 2019 Apr.
Article in English | MEDLINE | ID: mdl-27424482

ABSTRACT

BACKGROUND AND OBJECTIVE: The inter-subject variability characterizing the patients affected by type 1 diabetes mellitus makes automatic blood glucose control very challenging. Different patients have different insulin responses, and a control law based on a non-individualized model could be ineffective. The definition of an individualized control law in the context of artificial pancreas is currently an open research topic. In this work we consider two novel identification approaches that can be used for individualizing linear glucose-insulin models to a specific patient. METHODS: The first approach belongs to the class of black-box identification and is based on a novel kernel-based nonparametric approach, whereas the second is a gray-box identification technique which relies on a constrained optimization and requires to postulate a model structure as prior knowledge. The latter is derived from the linearization of the average nonlinear adult virtual patient of the UVA/Padova simulator. Model identification and validation are based on in silico data collected during simulations of clinical protocols designed to produce a sufficient signal excitation without compromising patient safety. The identified models are evaluated in terms of prediction performance by means of the coefficient of determination, fit, positive and negative max errors, and root mean square error. RESULTS: Both identification approaches were used to identify a linear individualized glucose-insulin model for each adult virtual patient of the UVA/Padova simulator. The resulting model simulation performance is significantly improved with respect to the performance achieved by a linear average model. CONCLUSIONS: The approaches proposed in this work have shown a good potential to identify glucose-insulin models for designing individualized control laws for artificial pancreas.


Subject(s)
Insulin/administration & dosage , Pancreas, Artificial/standards , Algorithms , Diabetes Mellitus, Type 1/drug therapy , Humans
10.
IEEE Trans Biomed Eng ; 65(3): 479-488, 2018 03.
Article in English | MEDLINE | ID: mdl-28092515

ABSTRACT

OBJECTIVE: Contemporary and future outpatient long-term artificial pancreas (AP) studies need to cope with the well-known large intra- and interday glucose variability occurring in type 1 diabetic (T1D) subjects. Here, we propose an adaptive model predictive control (MPC) strategy to account for it and test it in silico. METHODS: A run-to-run (R2R) approach adapts the subcutaneous basal insulin delivery during the night and the carbohydrate-to-insulin ratio (CR) during the day, based on some performance indices calculated from subcutaneous continuous glucose sensor data. In particular, R2R aims, first, to reduce the percentage of time in hypoglycemia and, secondarily, to improve the percentage of time in euglycemia and average glucose. In silico simulations are performed by using the University of Virginia/Padova T1D simulator enriched by incorporating three novel features: intra- and interday variability of insulin sensitivity, different distributions of CR at breakfast, lunch, and dinner, and dawn phenomenon. RESULTS: After about two months, using the R2R approach with a scenario characterized by a random 30% variation of the nominal insulin sensitivity the time in range and the time in tight range are increased by 11.39% and 44.87%, respectively, and the time spent above 180 mg/dl is reduced by 48.74%. CONCLUSIONS: An adaptive MPC algorithm based on R2R shows in silico great potential to capture intra- and interday glucose variability by improving both overnight and postprandial glucose control without increasing hypoglycemia. SIGNIFICANCE: Making an AP adaptive is key for long-term real-life outpatient studies. These good in silico results are very encouraging and worth testing in vivo.


Subject(s)
Computer Simulation , Models, Biological , Pancreas, Artificial , Algorithms , Blood Glucose/analysis , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/physiopathology , Humans , Hypoglycemia/drug therapy , Hypoglycemia/prevention & control , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Insulin/administration & dosage , Insulin/therapeutic use , Insulin Infusion Systems
11.
Diabetes Care ; 39(7): 1151-60, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27208331

ABSTRACT

OBJECTIVE: After testing of a wearable artificial pancreas (AP) during evening and night (E/N-AP) under free-living conditions in patients with type 1 diabetes (T1D), we investigated AP during day and night (D/N-AP) for 1 month. RESEARCH DESIGN AND METHODS: Twenty adult patients with T1D who completed a previous randomized crossover study comparing 2-month E/N-AP versus 2-month sensor augmented pump (SAP) volunteered for 1-month D/N-AP nonrandomized extension. AP was executed by a model predictive control algorithm run by a modified smartphone wirelessly connected to a continuous glucose monitor (CGM) and insulin pump. CGM data were analyzed by intention-to-treat with percentage time-in-target (3.9-10 mmol/L) over 24 h as the primary end point. RESULTS: Time-in-target (mean ± SD, %) was similar over 24 h with D/N-AP versus E/N-AP: 64.7 ± 7.6 vs. 63.6 ± 9.9 (P = 0.79), and both were higher than with SAP: 59.7 ± 9.6 (P = 0.01 and P = 0.06, respectively). Time below 3.9 mmol/L was similarly and significantly reduced by D/N-AP and E/N-AP versus SAP (both P < 0.001). SD of blood glucose concentration (mmol/L) was lower with D/N-AP versus E/N-AP during whole daytime: 3.2 ± 0.6 vs. 3.4 ± 0.7 (P = 0.003), morning: 2.7 ± 0.5 vs. 3.1 ± 0.5 (P = 0.02), and afternoon: 3.3 ± 0.6 vs. 3.5 ± 0.8 (P = 0.07), and was lower with D/N-AP versus SAP over 24 h: 3.1 ± 0.5 vs. 3.3 ± 0.6 (P = 0.049). Insulin delivery (IU) over 24 h was higher with D/N-AP and SAP than with E/N-AP: 40.6 ± 15.5 and 42.3 ± 15.5 vs. 36.6 ± 11.6 (P = 0.03 and P = 0.0004, respectively). CONCLUSIONS: D/N-AP and E/N-AP both achieved better glucose control than SAP under free-living conditions. Although time in the different glycemic ranges was similar between D/N-AP and E/N-AP, D/N-AP further reduces glucose variability.


Subject(s)
Blood Glucose/analysis , Circadian Rhythm/physiology , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/drug therapy , Insulin Infusion Systems , Insulin/administration & dosage , Pancreas, Artificial , Adult , Algorithms , Blood Glucose/drug effects , Blood Glucose Self-Monitoring/methods , Cross-Over Studies , Feasibility Studies , Female , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/adverse effects , Insulin/adverse effects , Male , Middle Aged , Social Conditions , Young Adult
12.
Lancet Diabetes Endocrinol ; 3(12): 939-47, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26432775

ABSTRACT

BACKGROUND: An artificial pancreas (AP) that can be worn at home from dinner to waking up in the morning might be safe and efficient for first routine use in patients with type 1 diabetes. We assessed the effect on glucose control with use of an AP during the evening and night plus patient-managed sensor-augmented pump therapy (SAP) during the day, versus 24 h use of patient-managed SAP only, in free-living conditions. METHODS: In a crossover study done in medical centres in France, Italy, and the Netherlands, patients aged 18-69 years with type 1 diabetes who used insulin pumps for continuous subcutaneous insulin infusion were randomly assigned to 2 months of AP use from dinner to waking up plus SAP use during the day versus 2 months of SAP use only under free-living conditions. Randomisation was achieved with a computer-generated allocation sequence with random block sizes of two, four, or six, masked to the investigator. Patients and investigators were not masked to the type of intervention. The AP consisted of a continuous glucose monitor (CGM) and insulin pump connected to a modified smartphone with a model predictive control algorithm. The primary endpoint was the percentage of time spent in the target glucose concentration range (3·9-10·0 mmol/L) from 2000 to 0800 h. CGM data for weeks 3-8 of the interventions were analysed on a modified intention-to-treat basis including patients who completed at least 6 weeks of each intervention period. The 2 month study period also allowed us to asses HbA1c as one of the secondary outcomes. This trial is registered with ClinicalTrials.gov, number NCT02153190. FINDINGS: During 2000-0800 h, the mean time spent in the target range was higher with AP than with SAP use: 66·7% versus 58·1% (paired difference 8·6% [95% CI 5·8 to 11·4], p<0·0001), through a reduction in both mean time spent in hyperglycaemia (glucose concentration >10·0 mmol/L; 31·6% vs 38·5%; -6·9% [-9·8% to -3·9], p<0·0001) and in hypoglycaemia (glucose concentration <3·9 mmol/L; 1·7% vs 3·0%; -1·6% [-2·3 to -1·0], p<0·0001). Decrease in mean HbA1c during the AP period was significantly greater than during the control period (-0·3% vs -0·2%; paired difference -0·2 [95% CI -0·4 to -0·0], p=0·047), taking a period effect into account (p=0·0034). No serious adverse events occurred during this study, and none of the mild-to-moderate adverse events was related to the study intervention. INTERPRETATION: Our results support the use of AP at home as a safe and beneficial option for patients with type 1 diabetes. The HbA1c results are encouraging but preliminary. FUNDING: European Commission.


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Hyperglycemia/prevention & control , Hypoglycemia/prevention & control , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Pancreas, Artificial , Adolescent , Adult , Aged , Blood Glucose/metabolism , Blood Glucose Self-Monitoring , Cross-Over Studies , Diabetes Mellitus, Type 1/blood , Female , Humans , Insulin Infusion Systems , Male , Middle Aged , Monitoring, Physiologic , Smartphone , Time Factors , Treatment Outcome , Young Adult
13.
Med Biol Eng Comput ; 53(12): 1271-83, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25430423

ABSTRACT

The latest achievements in sensor technologies for blood glucose level monitoring, pump miniaturization for insulin delivery, and the availability of portable computing devices are paving the way toward the artificial pancreas as a treatment for diabetes patients. This device encompasses a controller unit that oversees the administration of insulin micro-boluses and continuously drives the pump based on blood glucose readings acquired in real time. In order to foster the research on the artificial pancreas and prepare for its adoption as a therapy, the European Union in 2010 funded the AP@home project, following a series of efforts already ongoing in the USA. This paper, authored by members of the AP@home consortium, reports on the technical issues concerning the design and implementation of an architecture supporting the exploitation of an artificial pancreas platform. First a PC-based platform was developed by the authors to prove the effectiveness and reliability of the algorithms responsible for insulin administration. A mobile-based one was then adopted to improve the comfort for the patients. Both platforms were tested on real patients, and a description of the goals, the achievements, and the major shortcomings that emerged during those trials is also reported in the paper.


Subject(s)
Blood Glucose Self-Monitoring/methods , Computer Communication Networks , Pancreas, Artificial , Telemedicine/methods , User-Computer Interface , Biomedical Engineering , Blood Glucose/analysis , Humans
14.
Diabetes Technol Ther ; 16(10): 613-22, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25003311

ABSTRACT

BACKGROUND: The Control to Range Study was a multinational artificial pancreas study designed to assess the time spent in the hypo- and hyperglycemic ranges in adults and adolescents with type 1 diabetes while under closed-loop control. The controller attempted to keep the glucose ranges between 70 and 180 mg/dL. A set of prespecified metrics was used to measure safety. RESEARCH DESIGN AND METHODS: We studied 53 individuals for approximately 22 h each during clinical research center admissions. Plasma glucose level was measured every 15-30 min (YSI clinical laboratory analyzer instrument [YSI, Inc., Yellow Springs, OH]). During the admission, subjects received three mixed meals (1 g of carbohydrate/kg of body weight; 100 g maximum) with meal announcement and automated insulin dosing by the controller. RESULTS: For adults, the mean of subjects' mean glucose levels was 159 mg/dL, and mean percentage of values 71-180 mg/dL was 66% overall (59% daytime and 82% overnight). For adolescents, the mean of subjects' mean glucose levels was 166 mg/dL, and mean percentage of values in range was 62% overall (53% daytime and 82% overnight). Whereas prespecified criteria for safety were satisfied by both groups, they were met at the individual level in adults only for combined daytime/nighttime and for isolated nighttime. Two adults and six adolescents failed to meet the daytime criterion, largely because of postmeal hyperglycemia, and another adolescent failed to meet the nighttime criterion. CONCLUSIONS: The control-to-range system performed as expected: faring better overnight than during the day and performing with variability between patients even after individualization based on patients' prior settings. The system had difficulty preventing postmeal excursions above target range.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 1/blood , Glycated Hemoglobin/metabolism , Hyperglycemia/prevention & control , Hypoglycemia/prevention & control , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Pancreas, Artificial , Adolescent , Adult , Algorithms , Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 1/drug therapy , Dietary Carbohydrates , Female , Humans , Hyperglycemia/blood , Hypoglycemia/blood , Insulin/metabolism , Insulin Secretion , Male , Meals , Monitoring, Physiologic , Patient Safety , Pilot Projects , Postprandial Period , Reproducibility of Results , Time Factors , Treatment Outcome
15.
Diabetes Care ; 37(7): 1789-96, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24929429

ABSTRACT

OBJECTIVE: We estimate the effect size of hypoglycemia risk reduction on closed-loop control (CLC) versus open-loop (OL) sensor-augmented insulin pump therapy in supervised outpatient setting. RESEARCH DESIGN AND METHODS: Twenty patients with type 1 diabetes initiated the study at the Universities of Virginia, Padova, and Montpellier and Sansum Diabetes Research Institute; 18 completed the entire protocol. Each patient participated in two 40-h outpatient sessions, CLC versus OL, in randomized order. Sensor (Dexcom G4) and insulin pump (Tandem t:slim) were connected to Diabetes Assistant (DiAs)-a smartphone artificial pancreas platform. The patient operated the system through the DiAs user interface during both CLC and OL; study personnel supervised on site and monitored DiAs remotely. There were no dietary restrictions; 45-min walks in town and restaurant dinners were included in both CLC and OL; alcohol was permitted. RESULTS: The primary outcome-reduction in risk for hypoglycemia as measured by the low blood glucose (BG) index (LGBI)-resulted in an effect size of 0.64, P = 0.003, with a twofold reduction of hypoglycemia requiring carbohydrate treatment: 1.2 vs. 2.4 episodes/session on CLC versus OL (P = 0.02). This was accompanied by a slight decrease in percentage of time in the target range of 3.9-10 mmol/L (66.1 vs. 70.7%) and increase in mean BG (8.9 vs. 8.4 mmol/L; P = 0.04) on CLC versus OL. CONCLUSIONS: CLC running on a smartphone (DiAs) in outpatient conditions reduced hypoglycemia and hypoglycemia treatments when compared with sensor-augmented pump therapy. This was accompanied by marginal increase in average glycemia resulting from a possible overemphasis on hypoglycemia safety.


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Pancreas, Artificial , Adult , Blood Glucose/drug effects , Blood Glucose Self-Monitoring , Cell Phone , Cross-Over Studies , Diabetes Mellitus, Type 1/blood , Female , Humans , Hypoglycemia/chemically induced , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/therapeutic use , Insulin/adverse effects , Insulin/therapeutic use , Insulin Infusion Systems , Male , Middle Aged , Outpatients , Pancreas, Artificial/adverse effects , Treatment Outcome
16.
J Diabetes Sci Technol ; 8(2): 216-224, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24876570

ABSTRACT

The increase in the availability and reliability of network connections lets envision systems supporting a continuous remote monitoring of clinical parameters useful either for overseeing chronic diseases or for following clinical trials involving outpatients. We report here the results achieved by a telemedicine infrastructure that has been linked to an artificial pancreas platform and used during a trial of the AP@home project, funded by the European Union. The telemedicine infrastructure is based on a multiagent paradigm and is able to deliver to the clinic any information concerning the patient status and the operation of the artificial pancreas. A web application has also been developed, so that the clinic staff and the researchers involved in the design of the blood glucose control algorithms are able to follow the ongoing experiments. Albeit the duration of the experiments in the trial discussed in the article was limited to only 2 days, the system proved to be successful for monitoring patients, in particular overnight when the patients are sleeping. Based on that outcome we can conclude that the infrastructure is suitable for the purpose of accomplishing an intelligent monitoring of an artificial pancreas either during longer trials or whenever that system will be used as a routine treatment.

17.
Diabetes Care ; 37(5): 1212-5, 2014.
Article in English | MEDLINE | ID: mdl-24757228

ABSTRACT

OBJECTIVE: Inpatient studies suggest that model predictive control (MPC) is one of the most promising algorithms for artificial pancreas (AP). So far, outpatient trials have used hypo/hyperglycemia-mitigation or medical-expert systems. In this study, we report the first wearable AP outpatient study based on MPC and investigate specifically its ability to control postprandial glucose, one of the major challenges in glucose control. RESEARCH DESIGN AND METHODS: A new modular MPC algorithm has been designed focusing on meal control. Six type 1 diabetes mellitus patients underwent 42-h experiments: sensor-augmented pump therapy in the first 14 h (open-loop) and closed-loop in the remaining 28 h. RESULTS: MPC showed satisfactory dinner control versus open-loop: time-in-target (70-180 mg/dL) 94.83 vs. 68.2% and time-in-hypo 1.25 vs. 11.9%. Overnight control was also satisfactory: time-in-target 89.4 vs. 85.0% and time-in-hypo: 0.00 vs. 8.19%. CONCLUSIONS: This outpatient study confirms inpatient evidence of suitability of MPC-based strategies for AP. These encouraging results pave the way to randomized crossover outpatient studies.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/therapy , Pancreas, Artificial , Adult , Algorithms , Female , Humans , Hyperglycemia/prevention & control , Hypoglycemia/prevention & control , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Insulin/administration & dosage , Insulin/therapeutic use , Insulin Infusion Systems , Male , Postprandial Period , Treatment Outcome
18.
J Diabetes Sci Technol ; 7(6): 1470-83, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24351173

ABSTRACT

BACKGROUND: The objective of this research is to develop a new artificial pancreas that takes into account the experience accumulated during more than 5000 h of closed-loop control in several clinical research centers. The main objective is to reduce the mean glucose value without exacerbating hypo phenomena. Controller design and in silico testing were performed on a new virtual population of the University of Virginia/Padova simulator. METHODS: A new sensor model was developed based on the Comparison of Two Artificial Pancreas Systems for Closed-Loop Blood Glucose Control versus Open-Loop Control in Patients with Type 1 Diabetes trial AP@home data. The Kalman filter incorporated in the controller has been tuned using plasma and pump insulin as well as plasma and continuous glucose monitoring measures collected in clinical research centers. New constraints describing clinical knowledge not incorporated in the simulator but very critical in real patients (e.g., pump shutoff) have been introduced. The proposed model predictive control (MPC) is characterized by a low computational burden and memory requirements, and it is ready for an embedded implementation. RESULTS: The new MPC was tested with an intensive simulation study on the University of Virginia/Padova simulator equipped with a new virtual population. It was also used in some preliminary outpatient pilot trials. The obtained results are very promising in terms of mean glucose and number of patients in the critical zone of the control variability grid analysis. CONCLUSIONS: The proposed MPC improves on the performance of a previous controller already tested in several experiments in the AP@home and JDRF projects. This algorithm complemented with a safety supervision module is a significant step toward deploying artificial pancreases into outpatient environments for extended periods of time.


Subject(s)
Algorithms , Blood Glucose/metabolism , Diabetes Mellitus, Type 1/therapy , Insulin/administration & dosage , Insulin/therapeutic use , Models, Biological , Pancreas, Artificial , Computer Simulation , Diabetes Mellitus, Type 1/blood , Humans , Italy , Linear Models , Outpatients , Time Factors , United States
19.
Diabetes Care ; 36(12): 3882-7, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24170747

ABSTRACT

OBJECTIVE: To compare two validated closed-loop (CL) algorithms versus patient self-control with CSII in terms of glycemic control. RESEARCH DESIGN AND METHODS: This study was a multicenter, randomized, three-way crossover, open-label trial in 48 patients with type 1 diabetes mellitus for at least 6 months, treated with continuous subcutaneous insulin infusion. Blood glucose was controlled for 23 h by the algorithm of the Universities of Pavia and Padova with a Safety Supervision Module developed at the Universities of Virginia and California at Santa Barbara (international artificial pancreas [iAP]), by the algorithm of University of Cambridge (CAM), or by patients themselves in open loop (OL) during three hospital admissions including meals and exercise. The main analysis was on an intention-to-treat basis. Main outcome measures included time spent in target (glucose levels between 3.9 and 8.0 mmol/L or between 3.9 and 10.0 mmol/L after meals). RESULTS: Time spent in the target range was similar in CL and OL: 62.6% for OL, 59.2% for iAP, and 58.3% for CAM. While mean glucose level was significantly lower in OL (7.19, 8.15, and 8.26 mmol/L, respectively) (overall P = 0.001), percentage of time spent in hypoglycemia (<3.9 mmol/L) was almost threefold reduced during CL (6.4%, 2.1%, and 2.0%) (overall P = 0.001) with less time ≤2.8 mmol/L (overall P = 0.038). There were no significant differences in outcomes between algorithms. CONCLUSIONS: Both CAM and iAP algorithms provide safe glycemic control.


Subject(s)
Algorithms , Blood Glucose Self-Monitoring/methods , Blood Glucose/metabolism , Diabetes Mellitus, Type 1/drug therapy , Insulin Infusion Systems , Insulin/administration & dosage , Self Care/methods , Administration, Cutaneous , Adult , Cross-Over Studies , Diabetes Mellitus, Type 1/blood , Equipment Design , Female , Follow-Up Studies , Humans , Hypoglycemic Agents/administration & dosage , Infusion Pumps , Male , Treatment Outcome
20.
J Diabetes Sci Technol ; 7(4): 928-40, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23911174

ABSTRACT

BACKGROUND: Insulin-on-board (IOB) estimation is used in modern insulin therapy with continuous subcutaneous insulin infusion (CSII) as well as different automatic glucose-regulating strategies (i.e., artificial pancreas products) to prevent insulin stacking that may lead to hypoglycemia. However, most of the IOB calculations are static IOB (sIOB): they are based only on approximated insulin decay and do not take into account diurnal changes in insulin sensitivity. METHODS: A dynamic IOB (dIOB) that takes into account diurnal insulin sensitivity variation is suggested in this work and used to adjust the sIOB estimations. The dIOB function is used to correct the dosage of insulin boluses in light of this circadian variation. RESULTS: Basal-bolus as applied by pump users and model predictive control therapy with and without dIOB were evaluated using the University of Virginia/Padova metabolic simulator. Three protocols with four meals of 1 g carbohydrate/kg body weight were evaluated: a nominal scenario and two robustness scenarios, one in which insulin sensitivity was 15% greater than estimated and the other where the lunch is 30% less than announced. In the nominal and robustness scenarios, respectively, the dIOB led to 6% and 24% and 40% less hypoglycemia episodes than approaches without IOB. The new approach was also compared with the sIOB to evaluate the improvements with respect to the previous approach. CONCLUSIONS: Improved glucose regulation was demonstrated using the dIOB where circadian insulin sensitivity is used to adjust IOB estimation. Use of diurnal variations of insulin sensitivity appears to promote effective and safe insulin therapy using CSII or artificial pancreas. Clinical trials are warranted to determine whether nocturnal hypoglycemia can be reduced using the dIOB approach.


Subject(s)
Circadian Rhythm/physiology , Insulin Resistance/physiology , Insulin/administration & dosage , Insulin/metabolism , Adult , Humans , Insulin Infusion Systems , Observer Variation , Precision Medicine/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...