Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 222: 839-848, 2019 May.
Article in English | MEDLINE | ID: mdl-30743235

ABSTRACT

The possibility of a relevant contribution of biomass burning for domestic heating to PM10 in the urban area of Rome was explored. The concentration of levoglucosan was determined for 31 months in Rome and in a nearby peri-urban area. During the cold season it reached several hundreds of ng/m3 at both sites, with a clear inverse relationship with air temperature. During the summer it remained well below 100 ng/m3. Although at the peri-urban station the concentration was about 50% higher than at the urban site, the two seasonal patterns show a very good agreement (R2 = 0.95), pointing at a main contribution of biomass burning in both areas. Additional information came from the comparison of the 2-h time pattern of levoglucosan and the mixing conditions of the atmosphere, evaluated by monitoring natural radioactivity. During the summer levoglucosan concentration followed the pattern of natural radioactivity, indicating a contribution from many small sources scattered on a wide area (wildfires, barbecues, agricultural fires). During the heating season the activity of a source that switched in the early afternoon and switched off before midnight was highlighted. A 2-h delay between levoglucosan time patterns at the peri-urban and the urban site suggests that biomass burning mainly occurs outside Rome and the combustion products are then transported towards the city centre. Biomass burning contribution to PM10 was estimated as 12% at the peri-urban site and 6.7% inside the city, with relevant implications for the health of the about 2.800.000 citizens living in the urban area of Rome.


Subject(s)
Air Pollutants/analysis , Biomass , Fires , Particulate Matter/analysis , Cities , Environmental Monitoring , Glucose/analogs & derivatives , Glucose/analysis , Heating , Italy , Rome , Seasons , Temperature , Time Factors
2.
Indoor Air ; 26(4): 558-70, 2016 08.
Article in English | MEDLINE | ID: mdl-26184798

ABSTRACT

The daily concentration and chemical composition of PM2.5 was determined in indoor and outdoor 24-h samples simultaneously collected for a total of 5 weeks during a winter and a summer period in an apartment sited in Rome, Italy. The use of a specifically developed very quiet sampler (<35 dB) allowed the execution of the study while the family living in the apartment led its normal life. The indoor concentration of PM2.5 showed a small seasonal variation, while outdoor values were much higher during the winter study. Outdoor sources were found to contribute significantly to indoor PM concentration especially during the summer, when the apartment was naturally ventilated by opening the windows. During the winter the infiltration of outdoor PM components was lower and mostly regulated by the particle dimensions. Organics displayed In/Out ratios higher than unity during both periods; their indoor production increased significantly during the weekends, where the family stayed mostly at home. PM components were grouped into macrosources (soil, sea, secondary inorganics, traffic, organics). During the summer the main contributions to outdoor PM2.5 came from soil (30%), secondary inorganics (29%) and organics (22%). Organics dominated both indoor PM2.5 during the summer (60%) and outdoor and indoor PM2.5 during the winter (51% and 66%, respectively).


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Housing , Particulate Matter/analysis , Particle Size , Rome , Seasons , Ventilation/methods
3.
Environ Sci Pollut Res Int ; 22(12): 9204-14, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25586611

ABSTRACT

Air quality at the main station of the metro system of Rome (Termini hub) has been characterized by the point of view of particulate matter (PM) concentration and chemical composition. Indoor air in different environments (underground train platform and shopping center, metro carriages with and without air conditioning system) has been studied and compared with outdoor air at a nearby urban site. Air quality at the railway station, located outdoor at surface level, has been also considered for comparison. PM chemical characterization included ions, elemental carbon, organic carbon, macro-elements, and the bio-accessible and residual fractions of micro- and trace elements. Train platform and carriages without air conditioning resulted to be the most polluted environments, with indoor/outdoor ratio up to two orders of magnitude for many components. PM mass concentration was determined on filter membranes by the gravimetric procedure as well as from the optical particle counter (OPC) number concentration measurements. The OPC results, taken with the original calibration factor, were below 40 % of the value obtained by the gravimetric measurements. Only a chemical and morphological characterization of the collected dust could lead to a reconciliation of the results yielded by the two methods. Macro-components were used to estimate the strength of the main macro-sources. The most significant contribution is confirmed to derive from wheels, rails, and brakes abrasion; from soil re-suspension (over 50 % at the subway platform); and from organics (about 25 %). The increase in the concentration of elements was mostly due to the residual fraction, but also the bio-accessible fraction showed a remarkable enrichment, particularly in the case of Ba, Zn, Cd, and Ni.


Subject(s)
Air Pollutants/analysis , Air Pollutants/chemistry , Environmental Monitoring , Particulate Matter/analysis , Particulate Matter/chemistry , Railroads , Rome
SELECTION OF CITATIONS
SEARCH DETAIL
...