Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Steroid Biochem Mol Biol ; 223: 106133, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35654380

ABSTRACT

The complete understanding of the excretion of surplus 25-hydroxyvitamin D<sub>3</sub> [25(OH)D<sub>3</sub>] in humans remains to be accomplished. In our previous study, 24,25-dihydroxyvitamin D<sub>3</sub> [24,25(OH)<sub>2</sub>D<sub>3</sub>] 24-glucuronide was identified as a major urinary vitamin D<sub>3</sub> metabolite, while the glucuronide of 23,25-dihydroxyvitamin D<sub>3</sub> [23,25(OH)<sub>2</sub>D<sub>3</sub>] is another metabolite of interest but has not been sufficiently evaluated. Although the quantitative analysis of 24,25(OH)<sub>2</sub>D<sub>3</sub> liberated in urine by the treatment with ß-glucuronidase (GUS) has been conducted, no information was provided about the amount of the glucuronidated 23,25(OH)<sub>2</sub>D<sub>3</sub> in the urine. In this study, we first developed and validated a liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS)-based method for the simultaneous quantification of 23,25(OH)<sub>2</sub>D<sub>3</sub> and 24,25(OH)<sub>2</sub>D<sub>3</sub> liberated in urine by GUS. The analysis of the urine samples revealed that the amount of 23,25(OH)<sub>2</sub>D<sub>3</sub> was almost as much as that of 24,25(OH)<sub>2</sub>D<sub>3</sub>, in contrast to the fact that the plasma concentration of 23,25(OH)<sub>2</sub>D<sub>3</sub> was much lower than that of 24,25(OH)<sub>2</sub>D<sub>3</sub>. These results strongly suggested that 23,25(OH)<sub>2</sub>D<sub>3</sub> is more susceptible to glucuronidation and more promptly excreted into urine than 24,25(OH)<sub>2</sub>D<sub>3</sub>. Furthermore, the amount ratios of 23,25(OH)<sub>2</sub>D<sub>3</sub> to 24,25(OH)<sub>2</sub>D<sub>3</sub> in the urine samples did not markedly vary during the day (morning/evening) and even by a week-long vitamin D<sub>3</sub> supplementation (1000 IU/body/day). We concluded that the C-23 hydroxylation plays a crucial role in the urinary excretion of surplus 25(OH)D<sub>3</sub>.


Subject(s)
Cholecalciferol , Tandem Mass Spectrometry , 24,25-Dihydroxyvitamin D 3 , Chromatography, Liquid/methods , Glucuronidase , Glucuronides , Humans , Tandem Mass Spectrometry/methods , Vitamin D/analogs & derivatives
2.
Cell Chem Biol ; 29(4): 660-669.e12, 2022 04 21.
Article in English | MEDLINE | ID: mdl-34506728

ABSTRACT

Lactone-vitamin D3 is a major metabolite of vitamin D3, a lipophilic vitamin biosynthesized in numerous life forms by sunlight exposure. Although lactone-vitamin D3 was discovered 40 years ago, its biological role remains largely unknown. Chemical biological analysis of its photoaffinity probe identified the hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha (HADHA), a mitochondrial enzyme that catalyzes ß-oxidation of long-chain fatty acids, as its selective binding protein. Intriguingly, the interaction of lactone-vitamin D3 with HADHA does not affect the HADHA enzymatic activity but instead limits biosynthesis of carnitine, an endogenous metabolite required for the transport of fatty acids into the mitochondria for ß-oxidation. Lactone-vitamin D3 dissociates the protein-protein interaction of HADHA with trimethyllysine dioxygenase (TMLD), thereby impairing the TMLD enzyme activity essential in carnitine biosynthesis. These findings suggest a heretofore undescribed role of lactone-vitamin D3 in lipid ß-oxidation and carnitine biosynthesis, and possibly in sunlight-dependent shifts of lipid metabolism in animals.


Subject(s)
Lipid Metabolism , Vitamin D , Animals , Carnitine , Cholecalciferol , Fatty Acids/metabolism , Lactones , Oxidation-Reduction , Vitamins
3.
Steroids ; 162: 108695, 2020 10.
Article in English | MEDLINE | ID: mdl-32649998

ABSTRACT

A variety of metabolites derived from 25-hydroxyvitamin D3 [25(OH)D3], including its 3-epimer [Epi-25(OH)D3] and 3-O-sulfate [25(OH)D3-3S], is found in human plasma/serum. We hypothesized that the 3-O-sulfate of Epi-25(OH)D3 [Epi-25(OH)D3-3S] might be present in plasma/serum. Clarifying this point could improve our understanding of the metabolism of vitamin D3. In this study, we first carefully analyzed the cord plasma samples by derivatization-assisted liquid chromatography/electrospray ionization-tandem mass spectrometry and demonstrated the occurrence of Epi-25(OH)D3-3S in the plasma. However, the concentration ratio of Epi-25(OH)D3-3S to 25(OH)D3-3S (sulfated form) was infinitely lower than the ratio of Epi-25(OH)D3 to 25(OH)D3 (unconjugated form). To determine what caused this result, we next performed an in vitro experiment of the 3-O-sulfation for 25(OH)D3 and Epi-25(OH)D3 using the recombinant human sulfotransferase (SULT) 2A1. This in vitro experiment revealed that Epi-25(OH)D3 is a poor substrate for the 3-O-sulfation catalyzed by SULT2A1 as compared to 25(OH)D3. This substrate specificity of SULT2A1 would be the main cause for the result obtained from the analysis of the cord plasma samples.


Subject(s)
Calcifediol/blood , Calcifediol/metabolism , Fetal Blood/metabolism , Recombinant Proteins/metabolism , Sulfates/metabolism , Sulfotransferases/metabolism , Humans , Protein Binding
4.
Biomed Chromatogr ; 33(7): e4538, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30912169

ABSTRACT

A liquid chromatography/electrospray ionization-tandem mass spectrometry-based method was developed for the identification of the conjugation positions of the monoglucuronides of 25-hydroxyvitamin D3 [25(OH)D3 ] and 24,25-dihydroxyvitamin D3 [24,25(OH)2 D3 ] in human urine. The method employed derivatization with 4-(4-dimethylaminophenyl)-1,2,4-triazoline-3,5-dione to convert the glucuronides into fragmentable derivatives, which provided useful product ions for identifying the conjugation positions during the MS/MS. The derivatization also enhanced the assay sensitivity and specificity for urine sample analysis. The positional isomeric monoglucuronides, 25(OH)D3 -3- and -25-glucuronides, or 24,25(OH)2 D3 -3-, -24- and -25-glucuronides, were completely separated from each other under the optimized LC conditions. Using this method, the conjugation positions were successfully determined to be the C3 and C24 positions for the glucuronidated 25(OH)D3 and 24,25(OH)2 D3 , respectively. The 3-glucuronide was not present for 24,25(OH)2 D3 , unlike 25(OH)D3 , thus we found that selective glucuronidation occurs at the C24-hydroxy group for 24,25(OH)2 D3 .


Subject(s)
Cholecalciferol/urine , Chromatography, Liquid/methods , Glucuronides/urine , Tandem Mass Spectrometry/methods , Cholecalciferol/chemistry , Cholecalciferol/metabolism , Glucuronides/chemistry , Glucuronides/metabolism , Humans , Spectrometry, Mass, Electrospray Ionization/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...