Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 129(1): 157-66, 2004.
Article in English | MEDLINE | ID: mdl-15489038

ABSTRACT

Compelling evidence indicates that the long (D2L) and the short (D2S) isoform of dopamine (DA) D2 receptors serve distinct physiological functions in vivo. To address the involvement of these isoforms in the control of synaptic transmission in the striatum, we measured the sensitivity to D2 receptor stimulation of glutamate- and GABA-mediated currents recorded from striatal neurons of three mutant mice, in which the expression of D2L and D2S receptors was either ablated or variably altered. Our data indicate that both isoforms participate in the presynaptic inhibition of GABA transmission in the striatum, while the D2-receptor-dependent modulation of glutamate release preferentially involves the D2S receptor. Accordingly, the inhibitory effects of the DA D2 receptor agonist quinpirole (10 microM) on GABA(A)-mediated spontaneous inhibitory postsynaptic currents (IPSCs)correlate with the total number of D2 receptor sites in the striatum, irrespective of the specific receptor isoform expressed. In contrast, glutamate-mediated spontaneous excitatory postsynaptic currents (EPSCs) were significantly inhibited by quinpirole only when the total number of D2 receptor sites, normally composed by both D2L and D2S receptors in a ratio favoring the D2L isoform, was modified to express only the D2S isoform at higher than normal levels. Understanding the physiological roles of DA D2 receptors in the striatum is essential for the treatment of several neuropsychiatric conditions, such as Parkinson's disease, Tourette's syndrome, schizophrenia, and drug addiction.


Subject(s)
Corpus Striatum/metabolism , Glutamic Acid/metabolism , Receptors, Dopamine D2/metabolism , Synaptic Transmission/physiology , gamma-Aminobutyric Acid/metabolism , Animals , Corpus Striatum/drug effects , Dopamine Agonists/pharmacology , Evoked Potentials/drug effects , Evoked Potentials/physiology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Male , Mice , Mice, Mutant Strains , Mutation , Neurons/drug effects , Neurons/metabolism , Organ Culture Techniques , Patch-Clamp Techniques , Quinpirole/pharmacology , Receptors, Dopamine D2/drug effects , Receptors, Dopamine D2/genetics , Synaptic Transmission/drug effects
2.
Neuroreport ; 11(11): 2467-71, 2000 Aug 03.
Article in English | MEDLINE | ID: mdl-10943705

ABSTRACT

Chromaffin cells and sympathetic neurons arise from a common bipotential progenitor which, if exposed to nerve growth factor (NGF), matures into a sympathetic neuron, but if exposed to glucocorticoids (GCs), differentiates into a mature chromaffin cell. Pharmacological evidence indicates that, in adrenal medulla and sympathetic neurons, dopamine (DA) receptors belonging to the D-2 family inhibit catecholamine secretion. The molecular characterization of these receptors, however, is not been yet described. Our data suggest that bipotential cells obtained from newborn rat adrenal medulla express both isoforms of the D-2 receptor, while D-3 receptor and D-4 receptor messenger RNAs (mRNAs) are not present. GC-mediated maturation induces the expression of D-4 receptors, without modification of D-2 isoforms. Sympathetic neurons differentiated in vitro selectively express the D-2short mRNA. Taken together, present results suggest that NGF and GCs play a role in regulating D-2 family receptor expression in neural crest-derived cells.


Subject(s)
Cell Differentiation/physiology , Chromaffin Cells/metabolism , Gene Expression Regulation, Developmental/physiology , Neurons/metabolism , Receptors, Dopamine D2/genetics , Sympathetic Nervous System/growth & development , Animals , Cell Differentiation/drug effects , Cells, Cultured , Chromaffin Cells/cytology , Chromaffin Cells/drug effects , Dexamethasone/pharmacology , Male , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Neurons/cytology , Neurons/drug effects , Polymerase Chain Reaction/methods , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D2/drug effects , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3 , Receptors, Dopamine D4 , Sympathetic Nervous System/cytology , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...