Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 1968, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438390

ABSTRACT

Stabilization of riverbanks by vegetation has long been considered necessary to sustain single-thread meandering rivers. However, observation of active meandering in modern barren landscapes challenges this assumption. Here, we investigate a globally distributed set of modern meandering rivers with varying riparian vegetation densities, using satellite imagery and statistical analyses of meander-form descriptors and migration rates. We show that vegetation enhances the coefficient of proportionality between channel curvature and migration rates at low curvatures, and that this effect wanes in curvier channels irrespective of vegetation density. By stabilizing low-curvature reaches and allowing meanders to gain sinuosity as channels migrate laterally, vegetation quantifiably affects river morphodynamics. Any causality between denser vegetation and higher meander sinuosity, however, cannot be inferred owing to more frequent avulsions in modern non-vegetated environments. By illustrating how vegetation affects channel mobility and floodplain reworking, our findings have implications for assessing carbon stocks and fluxes in river floodplains.

2.
Sci Adv ; 8(13): eabm8446, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35363513

ABSTRACT

Coastal flooding prevention measures, such as storm-surge barriers, are being widely adopted globally because of the accelerating rise in sea levels. However, their impacts on the morphodynamics of shallow tidal embayments remain poorly understood. Here, we combine field data and modeling results from the microtidal Venice Lagoon (Italy) to identify short- and long-term consequences of flood regulation on lagoonal landforms. Artificial reduction of water levels enhances wave-induced sediment resuspension from tidal flats, promoting in-channel deposition, at the expense of salt marsh vertical accretion. In Venice, we estimate that the first 15 closures of the recently installed mobile floodgates operated between October 2020 and January 2021 contributed to a 12% reduction in marsh deposition, simultaneously promoting a generalized channel infilling. Therefore, suitable countermeasures need to be taken to offset these processes and prevent significant losses of geomorphic diversity due to repeated floodgate closures, whose frequency will increase as sea levels rise further.

3.
Sensors (Basel) ; 19(8)2019 Apr 14.
Article in English | MEDLINE | ID: mdl-31013992

ABSTRACT

The aim of this study is to present a peculiar experimental setup, designed to investigate the interaction between solitary waves and rigid emergent vegetation. Flow rate changes due to the opening and closing of a software-controlled electro-valve generate a solitary wave. The complexity of the problem required the combined use of different measurement systems of water level and velocity. Preliminary results of the experimental investigation, which allow us to point out the effect of the vegetation on the propagation of a solitary wave and the effectiveness of the measuring system, are also presented. In particular, water level and velocity field changes due to the interaction of the wave with rigid vegetation are investigated in detail.

SELECTION OF CITATIONS
SEARCH DETAIL
...