Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Hum Mol Genet ; 27(13): 2262-2275, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29648648

ABSTRACT

Skeletal abnormalities represent a major clinical burden in patients affected by the lysosomal storage disorder mucopolysaccharidosis type II (MPSII, OMIM #309900). While extensive research has emphasized the detrimental role of stored glycosaminoglycans (GAGs) in the bone marrow (BM), a limited understanding of primary cellular mechanisms underlying bone defects in MPSII has hampered the development of bone-targeted therapeutic strategies beyond enzyme replacement therapy (ERT). We here investigated the involvement of key signaling pathways related to the loss of iduronate-2-sulfatase activity in two different MPSII animal models, D. rerio and M. musculus. We found that FGF pathway activity is impaired during early stages of bone development in IDS knockout mice and in a newly generated Ids mutant fish. In both models the FGF signaling deregulation anticipated a slow but progressive defect in bone differentiation, regardless of any extensive GAGs storage. We also show that MPSII patient fibroblasts harboring different mutations spanning the IDS gene exhibit perturbed FGF signaling-related markers expression. Our work opens a new venue to discover possible druggable novel key targets in MPSII.


Subject(s)
Brain/metabolism , Fibroblast Growth Factors/genetics , Iduronate Sulfatase/genetics , Mucopolysaccharidosis II/genetics , Animals , Brain/pathology , Disease Models, Animal , Enzyme Replacement Therapy , Gene Expression Regulation , Glycosaminoglycans/genetics , Humans , Iduronate Sulfatase/therapeutic use , Mice , Mice, Knockout , Mucopolysaccharidosis II/pathology , Signal Transduction , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...