Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
1.
Life Sci Alliance ; 7(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38233073

ABSTRACT

DNA methylation is an essential epigenetic mechanism that regulates cellular reprogramming and development. Studies using whole-genome bisulfite sequencing have revealed distinct DNA methylome landscapes in human and mouse cells and tissues. However, the factors responsible for the differences in megabase-scale methylome patterns between cell types remain poorly understood. By analyzing publicly available 258 human and 301 mouse whole-genome bisulfite sequencing datasets, we reveal that genomic regions rich in guanine and cytosine, when located near the nuclear center, are highly susceptible to both global DNA demethylation and methylation events during embryonic and germline reprogramming. Furthermore, we found that regions that generate partially methylated domains during global DNA methylation are more likely to resist global DNA demethylation, contain high levels of adenine and thymine, and are adjacent to the nuclear lamina. The spatial properties of genomic regions, influenced by their guanine-cytosine content, are likely to affect the accessibility of molecules involved in DNA (de)methylation. These properties shape megabase-scale DNA methylation patterns and change as cells differentiate, leading to the emergence of different megabase-scale methylome patterns across cell types.


Subject(s)
DNA Methylation , Epigenome , Sulfites , Humans , Animals , Mice , DNA Methylation/genetics , Epigenome/genetics , Cytosine/metabolism , Guanine
2.
PLoS Genet ; 19(8): e1010855, 2023 08.
Article in English | MEDLINE | ID: mdl-37527244

ABSTRACT

Establishment of a proper DNA methylation landscape in mammalian oocytes is important for maternal imprinting and embryonic development. De novo DNA methylation in oocytes is mediated by the DNA methyltransferase DNMT3A, which has an ATRX-DNMT3-DNMT3L (ADD) domain that interacts with histone H3 tail unmethylated at lysine-4 (H3K4me0). The domain normally blocks the methyltransferase domain via intramolecular interaction and binding to histone H3K4me0 releases the autoinhibition. However, H3K4me0 is widespread in chromatin and the role of the ADD-histone interaction has not been studied in vivo. We herein show that amino-acid substitutions in the ADD domain of mouse DNMT3A cause dwarfism. Oocytes derived from homozygous females show mosaic loss of CG methylation and almost complete loss of non-CG methylation. Embryos derived from such oocytes die in mid-to-late gestation, with stochastic and often all-or-none-type CG-methylation loss at imprinting control regions and misexpression of the linked genes. The stochastic loss is a two-step process, with loss occurring in cleavage-stage embryos and regaining occurring after implantation. These results highlight an important role for the ADD domain in efficient, and likely processive, de novo CG methylation and pose a model for stochastic inheritance of epigenetic perturbations in germ cells to the next generation.


Subject(s)
DNA Methylation , Histones , Humans , Female , Mice , Male , Animals , Pregnancy , Histones/metabolism , DNA Methylation/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Chromosomes, Human, Y , DNA Methyltransferase 3A , Mosaicism , Oocytes/metabolism , Transcription Factors/genetics , DNA Modification Methylases , Mammals/genetics
3.
J Gen Appl Microbiol ; 69(2): 117-124, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37423744

ABSTRACT

A Thermus thermophilus lytic phage was isolated from a Japanese hot spring using a type IV pili-deficient strain as an indicator host, and designated as φMN1. Electron microscopic (EM) examination revealed that φMN1 had an icosahedral head and a contractile tail, suggesting that φMN1 belonged to Myoviridae. An EM analysis focused on φMN1 adsorption to the Thermus host cell showed that the receptor molecules for the phage were uniformly distributed on the outer surface of the cells. The circular double-stranded DNA of φMN1 was 76,659 base pairs in length, and the guanine and cytosine content was 61.8%. It was predicted to contain 99 open reading frames, and its putative distal tail fiber protein, which is essential for non-piliated host cell surface receptor recognition, was dissimilar in terms of sequence and length with its counterpart in the type IV pili-dependent φYS40. A phage proteomic tree revealed that φMN1 and φYS40 are in the same cluster, but many genes had low sequence similarities and some seemed to be derived from both mesophilic and thermophilic organisms. The gene organization suggested that φMN1 evolved from a non-Thermus phage through large-scale recombination events of the genes determining the host specificity, followed by gradual evolution by recombination of both the thermophilic and mesophilic DNAs assimilated by the host Thermus cells. This newly isolated phage will provide evolutionary insights into thermophilic phages.


Subject(s)
Bacteriophages , Hot Springs , Bacteriophages/genetics , Thermus thermophilus/genetics , Proteomics , Japan , Open Reading Frames
4.
BMC Bioinformatics ; 23(1): 371, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36096737

ABSTRACT

BACKGROUND: Epigenetic modifications established in mammalian gametes are largely reprogrammed during early development, however, are partly inherited by the embryo to support its development. In this study, we examine CpG island (CGI) sequences to predict whether a mouse blastocyst CGI inherits oocyte-derived DNA methylation from the maternal genome. Recurrent neural networks (RNNs), including that based on gated recurrent units (GRUs), have recently been employed for variable-length inputs in classification and regression analyses. One advantage of this strategy is the ability of RNNs to automatically learn latent features embedded in inputs by learning their model parameters. However, the available CGI dataset applied for the prediction of oocyte-derived DNA methylation inheritance are not large enough to train the neural networks. RESULTS: We propose a GRU-based model called CMIC (CGI Methylation Inheritance Classifier) to augment CGI sequence by converting it into variable-length k-mers, where the length k is randomly selected from the range [Formula: see text] to [Formula: see text], N times, which were then used as neural network input. N was set to 1000 in the default setting. In addition, we proposed a new embedding vector generator for k-mers called splitDNA2vec. The randomness of this procedure was higher than the previous work, dna2vec. CONCLUSIONS: We found that CMIC can predict the inheritance of oocyte-derived DNA methylation at CGIs in the maternal genome of blastocysts with a high F-measure (0.93). We also show that the F-measure can be improved by increasing the parameter N, that is, the number of sequences of variable-length k-mers derived from a single CGI sequence. This implies the effectiveness of augmenting input data by converting a DNA sequence to N sequences of variable-length k-mers. This approach can be applied to different DNA sequence classification and regression analyses, particularly those involving a small amount of data.


Subject(s)
DNA Methylation , Databases, Genetic , Animals , Carbazoles , CpG Islands , Inheritance Patterns , Mammals/genetics , Mice
5.
PLoS Genet ; 17(5): e1009570, 2021 05.
Article in English | MEDLINE | ID: mdl-34048432

ABSTRACT

DNA methylation at CG sites is important for gene regulation and embryonic development. In mouse oocytes, de novo CG methylation requires preceding transcription-coupled histone mark H3K36me3 and is mediated by a DNA methyltransferase DNMT3A. DNMT3A has a PWWP domain, which recognizes H3K36me2/3, and heterozygous mutations in this domain, including D329A substitution, cause aberrant CG hypermethylation of regions marked by H3K27me3 in somatic cells, leading to a dwarfism phenotype. We herein demonstrate that D329A homozygous mice show greater CG hypermethylation and severer dwarfism. In oocytes, D329A substitution did not affect CG methylation of H3K36me2/3-marked regions, including maternally methylated imprinting control regions; rather, it caused aberrant hypermethylation in regions lacking H3K36me2/3, including H3K27me3-marked regions. Thus, the role of the PWWP domain in CG methylation seems similar in somatic cells and oocytes; however, there were cell-type-specific differences in affected regions. The major satellite repeat was also hypermethylated in mutant oocytes. Contrary to the CA hypomethylation in somatic cells, the mutation caused hypermethylation at CH sites, including CA sites. Surprisingly, oocytes expressing only the mutated protein could support embryonic and postnatal development. Our study reveals that the DNMT3A PWWP domain is important for suppressing aberrant CG hypermethylation in both somatic cells and oocytes but that D329A mutation has little impact on the developmental potential of oocytes.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/chemistry , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Mutation , Oocytes/metabolism , Protein Domains , Amino Acid Substitution , Animals , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A , Female , Histones/chemistry , Histones/metabolism , Male , Mice , Phenotype , Protein Domains/genetics , Transcriptome
6.
Mol Ther ; 28(1): 129-141, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31677955

ABSTRACT

Recent advances in gene therapy technologies have enabled the treatment of congenital disorders and cancers and facilitated the development of innovative methods, including induced pluripotent stem cell (iPSC) production and genome editing. We recently developed a novel non-transmissible and non-integrating measles virus (MV) vector capable of transferring multiple genes simultaneously into a wide range of cells through the CD46 and CD150 receptors. The MV vector expresses four genes for iPSC generation and the GFP gene for a period of time sufficient to establish iPSCs from human fibroblasts as well as peripheral blood T cells. The transgenes were expressed differentially depending on their gene order in the vector. Human hematopoietic stem/progenitor cells were directly and efficiently reprogrammed to naive-like cells that could proliferate and differentiate into primed iPSCs by the same method used to establish primed iPSCs from other cell types. The novel MV vector has several advantages for establishing iPSCs and potential future applications in gene therapy.


Subject(s)
Cellular Reprogramming/genetics , Genetic Vectors , Genome, Viral/genetics , Hematopoietic Stem Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Measles virus/genetics , RNA, Viral/genetics , Animals , Blood Donors , Cell Differentiation/genetics , Fibroblasts/metabolism , Genetic Therapy/methods , HEK293 Cells , Heterografts , Humans , Male , Mice , Mice, Inbred NOD , Sendai virus/genetics , T-Lymphocytes/metabolism , Transduction, Genetic , Transgenes
7.
Dev Cell ; 51(1): 21-34.e5, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31474564

ABSTRACT

Facultative heterochromatin forms and reorganizes in response to external stimuli. However, how the initial establishment of such a chromatin state is regulated in cell-cycle-arrested cells remains unexplored. Mouse gonocytes are arrested male germ cells, at which stage the genome-wide DNA methylome forms. Here, we discovered transiently accessible heterochromatin domains of several megabases in size in gonocytes and named them differentially accessible domains (DADs). Open DADs formed in gene desert and gene cluster regions, primarily at transposons, with the reprogramming of histone marks, suggesting DADs as facultative heterochromatin. De novo DNA methylation took place with two waves in gonocytes: the first region specific and the second genome-wide. DADs were resistant to the first wave and their opening preceded the second wave. In addition, the higher-order chromosome architecture was reorganized with less defined chromosome compartments in gonocytes. These findings suggest that multiple layers of chromatin reprogramming facilitate de novo DNA methylation.


Subject(s)
DNA Methylation , Germ Cells/chemistry , Heterochromatin/chemistry , Testis/embryology , Animals , Cell Cycle , Chromatin/chemistry , Chromosomes , Genome , Histones/chemistry , Male , Mice , Mice, Inbred C57BL
8.
Proc Natl Acad Sci U S A ; 116(33): 16404-16409, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31358627

ABSTRACT

Because spermatogonial stem cells (SSCs) are immortal by serial transplantation, SSC aging in intact testes is considered to be caused by a deteriorated microenvironment. Here, we report a cell-intrinsic mode of SSC aging by glycolysis activation. Using cultured SSCs, we found that aged SSCs proliferated more actively than young SSCs and showed enhanced glycolytic activity. Moreover, they remained euploid and exhibited stable androgenetic imprinting patterns with robust SSC activity despite having shortened telomeres. Aged SSCs showed increased Wnt7b expression, which was associated with decreased Polycomb complex 2 activity. Our results suggest that aberrant Wnt7b expression activated c-jun N-terminal kinase (JNK), which down-regulated mitochondria numbers by suppressing Ppargc1a Down-regulation of Ppargc1a probably decreased reactive oxygen species and enhanced glycolysis. Analyses of the Klotho-deficient aging mouse model and 2-y-old aged rats confirmed JNK hyperactivation and increased glycolysis. Therefore, not only microenvironment but also intrinsic activation of JNK-mediated glycolysis contributes to SSC aging.


Subject(s)
Aging/genetics , JNK Mitogen-Activated Protein Kinases/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Proto-Oncogene Proteins/genetics , Spermatogenesis/genetics , Wnt Proteins/genetics , Adult Germline Stem Cells/metabolism , Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Animals , Cell Proliferation/genetics , Gene Expression Regulation, Developmental , Glucuronidase/genetics , Glycolysis/genetics , Klotho Proteins , Male , Mice , Polycomb-Group Proteins/genetics , Rats , Reactive Oxygen Species/metabolism , Spermatogonia/growth & development , Spermatogonia/metabolism , Stem Cell Niche/genetics , Testis/growth & development , Testis/metabolism
9.
Microbiol Resour Announc ; 8(23)2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31171624

ABSTRACT

Butyricimonas faecihominis 30A1, a butyrate-producing bacterium, was isolated from feces of a Japanese Alzheimer's disease patient. Here, we report the draft genome sequence of this organism. This paper is the first published report of the genomic sequence of a Butyricimonas sp.

10.
Cell Stem Cell ; 22(1): 50-63.e6, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29249463

ABSTRACT

Trophoblast cells play an essential role in the interactions between the fetus and mother. Mouse trophoblast stem (TS) cells have been derived and used as the best in vitro model for molecular and functional analysis of mouse trophoblast lineages, but attempts to derive human TS cells have so far been unsuccessful. Here we show that activation of Wingless/Integrated (Wnt) and EGF and inhibition of TGF-ß, histone deacetylase (HDAC), and Rho-associated protein kinase (ROCK) enable long-term culture of human villous cytotrophoblast (CT) cells. The resulting cell lines have the capacity to give rise to the three major trophoblast lineages, which show transcriptomes similar to those of the corresponding primary trophoblast cells. Importantly, equivalent cell lines can be derived from human blastocysts. Our data strongly suggest that the CT- and blastocyst-derived cell lines are human TS cells, which will provide a powerful tool to study human trophoblast development and function.


Subject(s)
Stem Cells/cytology , Trophoblasts/cytology , Animals , Blastocyst/cytology , Cell Differentiation , Cell Proliferation , Cells, Cultured , DNA Methylation/genetics , Gene Expression Profiling , Humans , Male , Mice, SCID , Stem Cells/metabolism , Transcriptome/genetics , Trophoblasts/metabolism
11.
PLoS Genet ; 13(10): e1007042, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28976982

ABSTRACT

The methylation of cytosine at CG sites in the mammalian genome is dynamically reprogrammed during gametogenesis and preimplantation development. It was previously shown that oocyte-derived DNMT1 (a maintenance methyltransferase) is essential for maintaining and propagating CG methylation at imprinting control regions in preimplantation embryos. In mammalian somatic cells, hemimethylated-CG-binding protein UHRF1 plays a critical role in maintaining CG methylation by recruiting DNMT1 to hemimethylated CG sites. However, the role of UHRF1 in oogenesis and preimplantation development is unknown. In the present study, we show that UHRF1 is mainly, but not exclusively, localized in the cytoplasm of oocytes and preimplantation embryos. However, smaller amounts of UHRF1 existed in the nucleus, consistent with the expected role in DNA methylation. We then generated oocyte-specific Uhrf1 knockout (KO) mice and found that, although oogenesis was itself unaffected, a large proportion of the embryos derived from the KO oocytes died before reaching the blastocyst stage (a maternal effect). Whole genome bisulfite sequencing revealed that blastocysts derived from KO oocytes have a greatly reduced level of CG methylation, suggesting that maternal UHRF1 is essential for maintaining CG methylation, particularly at the imprinting control regions, in preimplantation embryos. Surprisingly, UHRF1 was also found to contribute to de novo CG and non-CG methylation during oocyte growth: in Uhrf1 KO oocytes, transcriptionally-inactive regions gained less methylation, while actively transcribed regions, including the imprinting control regions, were unaffected or only slightly affected. We also found that de novo methylation was defective during the late stage of oocyte growth. To the best of our knowledge, this is the first study to demonstrate the role of UHRF1 in de novo DNA methylation in vivo. Our study reveals multiple functions of UHRF1 during the global epigenetic reprogramming of oocytes and early embryos.


Subject(s)
Blastocyst/metabolism , DNA Methylation , Nuclear Proteins/metabolism , Oocytes/metabolism , Animals , CCAAT-Enhancer-Binding Proteins , Cellular Reprogramming , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Embryonic Development , Epigenesis, Genetic , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Oocytes/growth & development , Oogenesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Subcellular Fractions/metabolism , Ubiquitin-Protein Ligases
12.
Genome Announc ; 5(8)2017 Feb 23.
Article in English | MEDLINE | ID: mdl-28232445

ABSTRACT

Bifidobacterium lemurum DSM 28807T was isolated from the gastrointestinal tracts of ring-tailed lemurs (Lemur catta). Here, we report the first draft genome sequence of this organism.

13.
Nucleic Acids Res ; 45(9): 5387-5398, 2017 May 19.
Article in English | MEDLINE | ID: mdl-28115634

ABSTRACT

The mouse PIWI-interacting RNA (piRNA) pathway produces a class of 26-30-nucleotide (nt) small RNAs and is essential for spermatogenesis and retrotransposon repression. In oocytes, however, its regulation and function are poorly understood. In the present study, we investigated the consequences of loss of piRNA-pathway components in growing oocytes. When MILI (or PIWIL2), a PIWI family member, was depleted by gene knockout, almost all piRNAs disappeared. This severe loss of piRNA was accompanied by an increase in transcripts derived from specific retrotransposons, especially IAPs. MIWI (or PIWIL1) depletion had a smaller effect. In oocytes lacking PLD6 (or ZUCCHINI or MITOPLD), a mitochondrial nuclease/phospholipase involved in piRNA biogenesis in male germ cells, the piRNA level was decreased to 50% compared to wild-type, a phenotype much milder than that in males. Since PLD6 is essential for the creation of the 5΄ ends of primary piRNAs in males, the presence of mature piRNA in PLD6-depleted oocytes suggests the presence of compensating enzymes. Furthermore, we identified novel 21-23-nt small RNAs, termed spiRNAs, possessing a 10-nt complementarity with piRNAs, which were produced dependent on MILI and independent of DICER. Our study revealed the differences in the biogenesis and function of the piRNA pathway between sexes.


Subject(s)
Argonaute Proteins/metabolism , Mitochondrial Proteins/metabolism , Oocytes/cytology , Oocytes/metabolism , Phospholipase D/metabolism , Animals , Cell Proliferation , Female , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Mice, Inbred C57BL , Oocytes/ultrastructure , Ovary/metabolism , RNA, Small Interfering/metabolism , Retroelements/genetics
14.
BMC Genomics ; 18(1): 31, 2017 01 05.
Article in English | MEDLINE | ID: mdl-28056787

ABSTRACT

BACKGROUND: Methylation of cytosine in genomic DNA is a well-characterized epigenetic modification involved in many cellular processes and diseases. Whole-genome bisulfite sequencing (WGBS), such as MethylC-seq and post-bisulfite adaptor tagging sequencing (PBAT-seq), uses the power of high-throughput DNA sequencers and provides genome-wide DNA methylation profiles at single-base resolution. However, the accuracy and consistency of WGBS outputs in relation to the operating conditions of high-throughput sequencers have not been explored. RESULTS: We have used the Illumina HiSeq platform for our PBAT-based WGBS, and found that different versions of HiSeq Control Software (HCS) and Real-Time Analysis (RTA) installed on the system provided different global CpG methylation levels (approximately 5% overall difference) for the same libraries. This problem was reproduced multiple times with different WGBS libraries and likely to be associated with the low sequence diversity of bisulfite-converted DNA. We found that HCS was the major determinant in the observed differences. To determine which version of HCS is most suitable for WGBS, we used substrates with predetermined CpG methylation levels, and found that HCS v2.0.5 is the best among the examined versions. HCS v2.0.12 showed the poorest performance and provided artificially lower CpG methylation levels when 5-methylcytosine is read as guanine (first read of PBAT-seq and second read of MethylC-seq). In addition, paired-end sequencing of low diversity libraries using HCS v2.2.38 or the latest HCS v2.2.58 was greatly affected by cluster densities. CONCLUSIONS: Software updates in the Illumina HiSeq platform can affect the outputs from low-diversity sequencing libraries such as WGBS libraries. More recent versions are not necessarily the better, and HCS v2.0.5 is currently the best for WGBS among the examined HCS versions. Thus, together with other experimental conditions, special care has to be taken on this point when CpG methylation levels are to be compared between different samples by WGBS.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Epigenomics , Genome , High-Throughput Nucleotide Sequencing , Software , 5-Methylcytosine , Animals , Cell Line , Cluster Analysis , CpG Islands , Epigenomics/methods , Humans , Mice , Sequence Analysis, DNA
15.
Genome Announc ; 4(6)2016 Dec 08.
Article in English | MEDLINE | ID: mdl-27932651

ABSTRACT

Probiotic Lactobacillus acidophilus L-55 was isolated from a healthy human gut. Here, we report the draft genome sequence of this organism.

16.
Am J Hum Genet ; 99(5): 1045-1058, 2016 Nov 03.
Article in English | MEDLINE | ID: mdl-27843122

ABSTRACT

DNA methylation is globally reprogrammed after fertilization, and as a result, the parental genomes have similar DNA-methylation profiles after implantation except at the germline differentially methylated regions (gDMRs). We and others have previously shown that human blastocysts might contain thousands of transient maternally methylated gDMRs (transient mDMRs), whose maternal methylation is lost in embryonic tissues after implantation. In this study, we performed genome-wide allelic DNA methylation analyses of purified trophoblast cells from human placentas and, surprisingly, found that more than one-quarter of the transient-in-embryo mDMRs maintained their maternally biased DNA methylation. RNA-sequencing-based allelic expression analyses revealed that some of the placenta-specific mDMRs were associated with expression of imprinted genes (e.g., TIGAR, SLC4A7, PROSER2-AS1, and KLHDC10), and three imprinted gene clusters were identified. This approach also identified some X-linked gDMRs. Comparisons of the data with those from other mammals revealed that genomic imprinting in the placenta is highly variable. These findings highlight the incomplete erasure of germline DNA methylation in the human placenta; understanding this erasure is important for understanding normal placental development and the pathogenesis of developmental disorders with imprinting effects.


Subject(s)
Alleles , Gene Expression Profiling , Genomic Imprinting , Placenta/metabolism , Apoptosis Regulatory Proteins , Blastocyst/cytology , Blastocyst/metabolism , DNA Methylation , Exome , Female , Genes, X-Linked , Genome, Human , Genome-Wide Association Study , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Molecular Sequence Annotation , Phosphoric Monoester Hydrolases , Placenta/cytology , Polymorphism, Single Nucleotide , Pregnancy , Sequence Analysis, RNA , Sodium-Bicarbonate Symporters/genetics , Sodium-Bicarbonate Symporters/metabolism , Trophoblasts/cytology , Trophoblasts/metabolism
17.
Genome Announc ; 4(2)2016 Mar 31.
Article in English | MEDLINE | ID: mdl-27034488

ABSTRACT

Leuconostoc mesenteroides213M0 was isolated from traditional fermented mare milk airag in Bulgan Aimag, Mongolia. This strain produces a listericidal bacteriocin-like inhibitory substance. Here, we report the draft genome sequence of this organism.

18.
Genome Announc ; 4(2)2016 Mar 24.
Article in English | MEDLINE | ID: mdl-27013047

ABSTRACT

Leuconostoc mesenteroides406 was isolated from the traditional fermented mare milk airag in Tuv Aimag, Mongolia. This strain produces an antilisterial bacteriocin. Here, we report the draft genome sequence of this organism.

19.
Genome Announc ; 4(1)2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26847890

ABSTRACT

Lactobacillus equigenerosi NRIC 0697(T) was isolated from the gastrointestinal tracts of healthy thoroughbreds. This strain produced unique spherical or oval cells, which is rare in the genus Lactobacillus. Here, we report the draft genome sequence of this strain.

20.
Genome Announc ; 4(1)2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26769944

ABSTRACT

Streptococcus orisasini SH06 was isolated from a healthy thoroughbred gastrointestinal tract. Here, we report the draft genome sequence of this organism. This paper is the first published report of the genomic sequence of S. orisasini.

SELECTION OF CITATIONS
SEARCH DETAIL
...