Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Evol ; 9(1): vead029, 2023.
Article in English | MEDLINE | ID: mdl-37207001

ABSTRACT

Rabbit haemorrhagic disease (RHD) is a significant and debilitating viral disease affecting lagomorphs. In September 2020, Singapore reported its first cases of RHD virus (RHDV) infection in domesticated rabbits. The initial findings reported that the outbreak strain belonged to genotype GI.2 (RHDV2/RHDVb), and epidemiological investigations could not identify the definitive source of the virus origin. Further recombination detection and phylogenetic analyses of the Singapore outbreak strain revealed that the RHDV was a GI.2 structural (S)/GI.4 non-structural (NS) recombinant variant. Sequence analyses on the National Centre for Biotechnology Information (NCBI) database showed high homology to recently emerged Australian variants, which were prevalent in local Australian lagomorph populations since 2017. Time-structured and phylogeographic analyses for the S and NS genes revealed a close genetic relationship between the Singapore RHDV strain and the Australian RHDV variants. More thorough epidemiological inquiries are necessary to ascertain how an Australian RHDV was introduced into the Singapore rabbit population, and opportune development of RHDV diagnostics and vaccines will be important to safeguard lagomorphs from future RHDV infection and disease management.

2.
Transbound Emerg Dis ; 69(3): 1010-1019, 2022 May.
Article in English | MEDLINE | ID: mdl-33682298

ABSTRACT

African horse sickness (AHS) is a highly infectious and deadly disease despite availability of vaccines. Molecular characterization of African horse sickness virus (AHSV) detected from the March 2020 Thailand outbreak was carried out by whole-genome sequencing using Nanopore with a Sequence-Independent Single Primer Amplification (SISPA) approach. Nucleotide sequence of the whole genome was compared with closest matching AHSV strains using phylogenetic analyses and the AHSV-1 virus shared high sequence identity with isolates from the same outbreak. Substitution analysis revealed non-synonymous and synonymous substitutions in the VP2 gene as compared to circulating South African strains. The use of sequencing technologies, such as Nanopore with SISPA, has enabled rapid detection, identification and detailed genetic characterization of the AHS virus for informed decision-making and implementation of disease control measures. Active genetic information sharing has also allowed emergence of AHSV to be better monitored on a global basis.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Horse Diseases , Nanopore Sequencing , Viral Vaccines , Animals , Disease Outbreaks/veterinary , Horse Diseases/epidemiology , Horses , Nanopore Sequencing/veterinary , Phylogeny , Thailand/epidemiology
3.
Transbound Emerg Dis ; 69(2): 286-296, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33406320

ABSTRACT

Hepatitis E is a significant liver disease caused by infection with hepatitis E virus (HEV). The risk factors for hepatitis E in developed countries include blood transfusion and ingestion of undercooked meat or meat products derived from HEV-infected animals. Since 2000, there has been increased human hepatitis E incidence reported in Singapore. Although the causes of this increase have not been established, several studies have linked zoonotic HEV infections in humans to pork consumption. It is therefore important to closely monitor the presence of HEV in food sources for the prevalence and virulence. In this study, we demonstrated the presence of HEV in pigs imported into Singapore for consumption through serological and molecular investigation of live pig and post-slaughter samples collected between 2000 and 2019. Among imported pigs, anti-HEV antibody prevalence remained at a level around 35% until 2017, with a statistically significant increase in 2018. HEV RNA was detected in 8.40% (34/405) of the faecal samples, indicative of an active infection in the pigs. HEV RNA was also detected in 6.67% (4/60) of liver samples obtained post-slaughter. We also report the development of an RT-PCR-based next-generation sequencing (NGS) method that enabled full sequencing of the HEV genome in HEV RNA-positive samples in a relatively short span of time. Phylogenetic analysis identified the HEV in one of the imported pigs (HEV-S28) as genotype 3a, which clustered together with the human HEV strains previously identified in Singapore. We found that the HEV-S28 strain exhibited amino acid substitutions that are associated with reduced HEV replication efficiency. The increase in anti-HEV seroprevalence in the pig population from 2018 is worth further exploration. We will continue to monitor the prevalent HEV strains and assess the genetic diversity of HEV in the imported pigs to confirm the potential association with human infections.


Subject(s)
Hepatitis E virus , Hepatitis E , Swine Diseases , Animals , Hepatitis E/epidemiology , Hepatitis E/veterinary , Hepatitis E virus/genetics , Phylogeny , Prevalence , RNA, Viral/genetics , Seroepidemiologic Studies , Singapore/epidemiology , Swine , Swine Diseases/epidemiology
4.
Transbound Emerg Dis ; 69(3): 1521-1528, 2022 May.
Article in English | MEDLINE | ID: mdl-33892517

ABSTRACT

Rabbit haemorrhagic disease (RHD) is a significant viral disease caused by infection with Rabbit haemorrhagic disease virus (RHDV). The first documented cases of RHDV in Singapore occurred in adult pet European rabbits (Oryctolagus cuniculus) in September 2020. Rabbits presented with acute hyporexia, lethargy, huddled posture, and varying degrees of pyrexia and tachypnoea. Clinical pathology consistently reflected markedly elevated alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALKP). Hepatic lobe torsion was ruled out using ultrasonography and colour Doppler studies in all patients. A total of 11 rabbits owned by 3 families were presented to the clinics; 8/11 rabbits died within 48 hr of presentation, while the remaining two rabbits had recovered after prolonged hospitalization and one rabbit was aclinical. Histopathology revealed acute, marked diffuse hepatocellular necrosis and degeneration, findings which were suggestive for RHDV infection and prompted the undertaking of further molecular diagnostics. Subsequent polymerase chain reaction of the liver samples detected RHDV RNA. Molecular characterization of viral genomes by whole genome sequencing revealed that the outbreak strain was of the genotype GI.2 (RHDV2/RHDVb). Nucleotide sequences of the VP60 gene were compared with various RHDV variants using phylogenetic analysis. The sample genome shared highest sequence identity with a GI.2-genotyped virus from GenBank (RHDV isolate Algarve 1 polyprotein and minor structural protein (VP10) genes, GenBank accession KF442961). The combination of clinical, histopathological, molecular and sequencing technologies enabled rapid detection and detailed genetic characterization of the RHDV virus causing the present outbreak for prompt implementation of disease control measures in Singapore. Further epidemiological investigations of potential virus introduction into Singapore are ongoing.


Subject(s)
Caliciviridae Infections , Hemorrhagic Disease Virus, Rabbit , Animals , Caliciviridae Infections/epidemiology , Caliciviridae Infections/veterinary , Disease Outbreaks/veterinary , Hemorrhagic Disease Virus, Rabbit/genetics , Humans , Phylogeny , Rabbits , Singapore
5.
Transbound Emerg Dis ; 69(5): 3077-3083, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34480780

ABSTRACT

Rabbit haemorrhagic disease (RHD) is a highly contagious viral disease affecting lagomorphs. The first documented cases of RHD in Singapore occurred in adult pet European rabbits in September 2020. Singapore subsequently declared the outbreak resolved in December 2020. Epidemiological investigations ruled out introductions via importation of infected rabbits and contaminated feed. The source could not be definitively determined. However, the findings suggested that the incident involved both inter- and intra-household transmission and veterinary clinic-household transmission. This incident demonstrated the importance of sustained application of biosecurity measures, epidemiological investigations including active case finding, control measures such as expedient vaccine dissemination and risk communications. It showed that even without a wild lagomorph population, an urbanized city-state like Singapore could still encounter emerging diseases such as RHD. Given its social impact on rabbit owners, the National Parks Board, Singapore and private veterinarians worked together to communicate with rabbit owners in order to urge them to adopt biosecurity measures and to address their concerns.


Subject(s)
Caliciviridae Infections , Hemorrhagic Disease Virus, Rabbit , Lagovirus , Animals , Caliciviridae Infections/epidemiology , Caliciviridae Infections/prevention & control , Caliciviridae Infections/veterinary , Disease Outbreaks/prevention & control , Disease Outbreaks/veterinary , Hemorrhagic Disease Virus, Rabbit/genetics , Phylogeny , Rabbits , Singapore/epidemiology
6.
Transbound Emerg Dis ; 66(5): 1884-1893, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31059176

ABSTRACT

Equine influenza is a major cause of respiratory infections in horses and can spread rapidly despite the availability of commercial vaccines. In this study, we carried out molecular characterization of Equine Influenza Virus (EIV) isolated from the Malaysian outbreak in 2015 by sequencing of the HA and NA gene segments using Sanger sequencing. The nucleotide and amino acid sequences of HA and NA were compared with representative Florida clade 1 and clade 2 strains using phylogenetic analysis. The Florida clade 1 viruses identified in this outbreak revealed numerous amino acid substitutions in the HA protein as compared to the current OIE vaccine strain recommendations and representative strains of circulating Florida sub-lineage clade 1 and clade 2. Differences in HA included amino acids located within antigenic sites which could lead to reduced immune recognition of the outbreak strain and alter the effectiveness of vaccination against the outbreak strain. Detailed surveillance and genetic information sharing could allow genetic drift of equine influenza viruses to be monitored more effectively on a global basis and aid in refinement of vaccine strain selection for EIV.


Subject(s)
Disease Outbreaks/veterinary , Horse Diseases/epidemiology , Influenza A Virus, H3N8 Subtype/genetics , Orthomyxoviridae Infections/veterinary , Vaccination/veterinary , Amino Acid Sequence , Amino Acid Substitution , Animals , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Horse Diseases/virology , Horses , Influenza A Virus, H3N8 Subtype/isolation & purification , Malaysia/epidemiology , Nasopharynx/virology , Neuraminidase/genetics , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology , Phylogeny , Sequence Alignment/veterinary , Viral Proteins/genetics
7.
Virol J ; 16(1): 71, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31138237

ABSTRACT

BACKGROUND: Lates calcarifer, known as seabass in Asia and barramundi in Australia, is a widely farmed species internationally and in Southeast Asia and any disease outbreak will have a great economic impact on the aquaculture industry. Through disease investigation of Asian seabass from a coastal fish farm in 2015 in Singapore, a novel birnavirus named Lates calcarifer Birnavirus (LCBV) was detected and we sought to isolate and characterize the virus through molecular and biochemical methods. METHODS: In order to propagate the novel birnavirus LCBV, the virus was inoculated into the Bluegill Fry (BF-2) cell line and similar clinical signs of disease were reproduced in an experimental fish challenge study using the virus isolate. Virus morphology was visualized using transmission electron microscopy (TEM). Biochemical analysis using chloroform and 5-Bromo-2'-deoxyuridine (BUDR) sensitivity assays were employed to characterize the virus. Next-Generation Sequencing (NGS) was also used to obtain the virus genome for genetic and phylogenetic analyses. RESULTS: The LCBV-infected BF-2 cell line showed cytopathic effects such as rounding and granulation of cells, localized cell death and detachment of cells observed at 3 to 5 days' post-infection. The propagated virus, when injected intra-peritoneally into naïve Asian seabass under experimental conditions, induced lesions similar to fish naturally infected with LCBV. Morphology of LCBV, visualized under TEM, revealed icosahedral particles around 50 nm in diameter. Chloroform and BUDR sensitivity assays confirmed the virus to be a non-enveloped RNA virus. Further genome analysis using NGS identified the virus to be a birnavirus with two genome segments. Phylogenetic analyses revealed that LCBV is more closely related to the Blosnavirus genus than to the Aquabirnavirus genus within the Birnaviridae family. CONCLUSIONS: These findings revealed the presence of a novel birnavirus that could be linked to the disease observed in the Asian seabass from the coastal fish farms in Singapore. This calls for more studies on disease transmission and enhanced surveillance programs to be carried out to understand pathogenicity and epidemiology of this novel virus. The gene sequences data obtained from the study can also pave way to the development of PCR-based diagnostic test methods that will enable quick and specific identification of the virus in future disease investigations.


Subject(s)
Bass/virology , Fish Diseases/virology , Genome, Viral , Infectious bursal disease virus/classification , Infectious bursal disease virus/isolation & purification , Animals , Aquaculture , Cell Line , High-Throughput Nucleotide Sequencing , Infectious bursal disease virus/ultrastructure , Microscopy, Electron, Transmission , Phylogeny , Polymerase Chain Reaction , Singapore
8.
J Virol ; 88(18): 10613-23, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24990997

ABSTRACT

UNLABELLED: Cytotoxic T lymphocytes recognizing conserved peptide epitopes are crucial for protection against influenza A virus (IAV) infection. The CD8 T cell response against the M158-66 (GILGFVFTL) matrix protein epitope is immunodominant when restricted by HLA-A*02, a major histocompatibility complex (MHC) molecule expressed by approximately half of the human population. Here we report that the GILGFVFTL peptide is restricted by multiple HLA-C*08 alleles as well. We observed that M158-66 was able to elicit cytotoxic T lymphocyte (CTL) responses in both HLA-A*02- and HLA-C*08-positive individuals and that GILGFVFTL-specific CTLs in individuals expressing both restriction elements were distinct and not cross-reactive. The crystal structure of GILGFVFTL-HLA-C*08:01 was solved at 1.84 Å, and comparison with the known GILGFVFTL-HLA-A*02:01 structure revealed that the antigen bound both complexes in near-identical conformations, accommodated by binding pockets shaped from shared as well as unique residues. This discovery of degenerate peptide presentation by both HLA-A and HLA-C allelic variants eliciting unique CTL responses to IAV infection contributes fundamental knowledge with important implications for vaccine development strategies. IMPORTANCE: The presentation of influenza A virus peptides to elicit immunity is thought to be narrowly restricted, with a single peptide presented by a specific HLA molecule. In this study, we show that the same influenza A virus peptide can be more broadly presented by both HLA-A and HLA-C molecules. This discovery may help to explain the differences in immunity to influenza A virus between individuals and populations and may also aid in the design of vaccines.


Subject(s)
Epitopes, T-Lymphocyte/immunology , HLA-A Antigens/immunology , HLA-C Antigens/immunology , Influenza A virus/immunology , Influenza, Human/immunology , T-Lymphocytes, Cytotoxic/immunology , Viral Matrix Proteins/immunology , Amino Acid Sequence , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , HLA-A Antigens/chemistry , HLA-A Antigens/genetics , HLA-C Antigens/chemistry , HLA-C Antigens/genetics , Humans , Influenza A virus/genetics , Influenza, Human/genetics , Influenza, Human/virology , Interferon-gamma/immunology , Molecular Sequence Data , Sequence Alignment , T-Lymphocytes, Cytotoxic/virology , Viral Matrix Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...