Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Ecol ; 27(7): 1556-1571, 2018 04.
Article in English | MEDLINE | ID: mdl-29575349

ABSTRACT

Striking genetic structure among marine populations at small spatial scales is becoming evident with extensive molecular studies. Such observations suggest isolation at small scales may play an important role in forming patterns of genetic diversity within species. Isolation-by-distance, isolation-by-environment and historical priority effects are umbrella terms for a suite of processes that underlie genetic structure, but their relative importance at different spatial and temporal scales remains elusive. Here, we use marine lakes in Indonesia to assess genetic structure and assess the relative roles of the processes in shaping genetic differentiation in populations of a bivalve mussel (Brachidontes sp.). Marine lakes are landlocked waterbodies of similar age (6,000-10,000 years), but with heterogeneous environments and varying degrees of connection to the sea. Using a population genomic approach (double-digest restriction-site-associated DNA sequencing), we show strong genetic structuring across populations (range FST : 0.07-0.24) and find limited gene flow through admixture plots. At large spatial scales (>1,400 km), a clear isolation-by-distance pattern was detected. At smaller spatial scales (<200 km), this pattern is maintained, but accompanied by an association of genetic divergence with degree of connection. We hypothesize that (incomplete) dispersal barriers can cause initial isolation, allowing priority effects to give the numerical advantage necessary to initiate strong genetic structure. Priority effects may be strengthened by local adaptation, which the data may corroborate by showing a high correlation between mussel genotypes and temperature. Our study indicates an often-neglected role of (evolution-mediated) priority effects in shaping population divergence.


Subject(s)
Animal Distribution/physiology , Bivalvia/genetics , Bivalvia/physiology , Genetic Variation , Animals , Gene Flow , Geography , Indonesia , Lakes , Temperature
2.
Bioinformation ; 8(25): 1271-6, 2012.
Article in English | MEDLINE | ID: mdl-23275733

ABSTRACT

Lombok Strait has abundance of Sardine, Sardinella lemuru, which contains such high amount of omega-3 fatty acid (omega-3). However, the genetic relationship of S. lemuru with other commercial fish rich in omega-3 has not been widely studied yet. Studies on genetic proximity of S. lemuru with the other marine fish using 12S rRNA gene is very important in order to obtain genetic information of the Sardine to develop an appropriate strategy for future conservation of the fish in Lombok Strait. The aim of this study was to find out the genetic relationship of Sardinella lemuru living in Lombok Strait with the economically valuable fish and its correlation with omega-3 production. Sardinella lemuru were collected from Lombok Strait, the phylogenetic tree was done based on 12S rRNA gene through a neighbor-joining method to identify the relationship of Sardines and fish rich in omega-3 fatty acid. The phylogenetic tree showed that Sardinella lemuru is similar to Sardinella aurita and has a close similarity with Sardinella maderensis. However, the relationship did not correspond to omega-3 production. Based on the results of the study, it is suggested that the production of omega-3 is not specifically based on the proximity of the species, but it is more associated with conserved domain of Δ6-desaturase. Nevertheless, detailed mechanisms still need to be elucidated.

SELECTION OF CITATIONS
SEARCH DETAIL