Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Haptics ; 16(4): 868-873, 2023.
Article in English | MEDLINE | ID: mdl-37647186

ABSTRACT

Airborne ultrasound tactile display (AUTD) is used to provide non-contact tactile sensations with specific foci sound fields through the optimization of transducer phases. However, most existing optimization approaches are not directly applicable in case of an inhomogeneous medium, such as in the presence of obstacles between the AUTD and objective sound field. Certain methods can perform optimizations by considering the sound-scattering surfaces of the obstacles to compute the transmission matrix, which requires several complex measurements. This study proposed two methods to reconstruct the sound field under an inhomogeneous medium, wherein the need to calculate the impact of the obstacles was eliminated. The two methods are Bayesian optimization and greedy algorithm with brute-force search. Further, the process of the foci field generation was assumed as a black box. The proposed methods require only the pressure intensity at the control point generated by the input phases, discarding the need for transmission matrix in the presence of obstacles. Moreover, these methods offer the advantage of optimization of the phases in the presence of obstacles. This study explains the working of proposed methods in different forms of foci fields encountering obstacles.


Subject(s)
Touch Perception , Humans , Bayes Theorem , Sound , Ultrasonography/methods , Touch
2.
IEEE Trans Haptics ; 16(3): 412-423, 2023.
Article in English | MEDLINE | ID: mdl-37527305

ABSTRACT

In vibrotactile stimuli, it is essential to reproduce realistic tactile sensations to enhance the immersiveness of applications. To reproduce more realistic tactile experiences, various tools have been proposed to fine-tune and design vibrotactile sensations. Considering the situation where users adjust parameters manually, providing tactile sensations with fewer parameters is desirable. This study examines the coarsest resolution in the time and frequency dimensions necessary to present tactile sensations as realistic as vibrations recorded by the sensor. Time and frequency are fundamental parameters to express vibrations as a spectrogram, and we considered it important to investigate how much coarser the resolution could be without changing perception. We focus on the textural vibrations and the preliminary experiment compared actual texture vibrations with the reconstructed vibration as coarse as possible in the frequency dimension. The result showed that the frequency resolution above 172 Hz makes it difficult to distinguish between the vibrations. The main experiment, a similar discrimination experiment, verified the time resolution using the averaging filter of vibration intensity over time. The results indicate that with the update interval set to 30 ms, the discrimination rate compared to the original vibration is approximately 60%. This percentage is below the chance level of 75%, indicating that distinguishing between the two is difficult. Based on our experiments, it is necessary to have a frequency resolution of at least 172 Hz and a time resolution that updates intensity at a rate of 30 fps or higher to recreate tactile sensations comparable to actual vibrations.


Subject(s)
Touch Perception , Humans , Touch , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...