Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 11(12)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34940426

ABSTRACT

The sorption properties of polymers and the mobility of penetrants are the main factors which determine the trans-membrane processes. Other factors concern the membrane material structure and chemical nature. In this paper, we consider the case of polymers with similar structure units, namely a polymer and its pre-polymer (polybenzoxazinoneimide and imide-containing polyamic acid). The available experimental data show a great difference in the pervaporation process using these two polymeric membranes. Some explanation of this difference can be found at the atomic-level study. A comparative analysis of the diffusion of water and isopropanol molecules was carried out using the density functional theory and molecular dynamics simulations.

2.
Carbohydr Polym ; 197: 548-557, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30007646

ABSTRACT

Chitosan (CS) films containing deep eutectic solvent (DES) based on malonic acid (MA) and choline chloride (ChCl) were successfully prepared by solution casting method by using DES content ranging from 0 to 82 wt%. A strong interaction of CS with the components of DES was demonstrated by analyses of water sorption isotherms, atomic force microscopy and FTIR results. The plasticizing effect of the MA and ChCl mixture on the CS matrix was shown by static bulk mechanical measurements, thermal analysis and quantitative nanomechanical mapping (QNM). Elongation at break increased from 3 to 62% at increase of DES content from 0 to 67 wt%, while further increase of DES content led to the decreasing of maximal elongation. Introduction of DES into CS films led to the appearance of glass transition temperature in the region +2 - -2.3 °C. QNM results indicated homogeneity of the films containing up to 75 wt% of DES.

3.
Polymers (Basel) ; 10(11)2018 Nov 03.
Article in English | MEDLINE | ID: mdl-30961147

ABSTRACT

Segmented poly(urethane-imide)s (PUIs) were synthesized by polyaddition reaction and applied for preparation of membranes. Tolylene-2,4-diisocyanate, pyromellitic dianhydride, and m-phenylenediamine for chain extension were used to form hard aromatic blocks. Polycaprolactone diols with molecular weights equal to 530 and 2000 g mol-1 were chosen as soft segments. The effect of the length of soft segments on the structure, morphology, and transport properties of segmented poly(urethane-imide) membranes were studied using atomic force microscopy, small-angle and wide-angle X-ray scattering, and pervaporation experiments. It was found that a copolymer with a shorter soft segment (530 g mol-1) consists of soft domains in a hard matrix, while the introduction of polycaprolactone blocks with higher molecular weight (2000 g mol-1) leads to the formation of hard domains in a soft matrix. Additionally, the introduction of hard segments prevents crystallization of polycaprolactone. Transport properties of membranes based on segmented PUIs containing soft segments of different length were tested for pervaporation of a model mixture of propanol/water with 20 wt % H2O content. It was found that a membrane based on segmented PUIs containing longer soft segments demonstrates higher flux (8.8 kg µm m-2 h-1) and selectivity (179) toward water in comparison with results for pure polycaprolactone reported in literature. The membrane based on segmented PUIs with 530 g mol-1 soft segment has a lower flux (5.1 kg µm m-2 h-1) and higher selectivity (437).

4.
Environ Sci Pollut Res Int ; 25(21): 20354-20362, 2018 Jul.
Article in English | MEDLINE | ID: mdl-28456916

ABSTRACT

This study focuses first on the preparation of mixed matrix supported membranes of polyvinyl alcohol (PVA) and low-hydroxylated fullerenol C60(OH)12 used to create water selective membranes and then on their pervaporation properties for the separation of water-THF mixtures. These novel supported PVA membranes containing nano-carbon particles were prepared to reach high membrane performance for further integration in a dehydration process, such as distillation coupled to pervaporation. The separation of water-THF mixtures was performed with the supported membranes over a wide range of water concentrations in the feed mixture, i.e., from the azeotrope range up to 30 wt%, to evaluate the performance and stability of the thin active layer. SEM was used to visualize the internal morphology of the membrane. The influence of temperature on the transport properties was also investigated. All the membranes were highly water selective and stable up to 30 wt% water in the feed. The best compromise of transport properties was obtained for the C60(OH)12(5%)-PVA supported composite membrane: a permeate enrichment of 99.3 ± 0.3 wt% water and a flux of 0.25 ± 0.02 kg/(m2 h) for the separation of a mixture containing 5.7 wt% water and 94.3 wt% tetrahydrofuran (THF) at 30 °C. Considering its water stability, this supported membrane with a dense layer thinner than 2 µm appears promising for use in hybrid industrial processes to upgrade solvents with a smaller environmental footprint than conventional methods.


Subject(s)
Distillation , Environment , Fullerenes , Furans , Membranes, Artificial , Polyvinyl Alcohol , Water , Recycling/methods , Solvents , Temperature
5.
Polymers (Basel) ; 9(7)2017 Jul 06.
Article in English | MEDLINE | ID: mdl-30970946

ABSTRACT

It is known that structure of the interface between inorganic nanoparticles and polymers significantly influences properties of a polymer⁻inorganic composite. At the same time, amount of experimental researches on the structure and properties of material near the inorganic-polymer interface is low. In this work, we report for the first time the investigation of nanomechanical properties and maps of adhesion of material near the inorganic-polymer interface for the polyheteroarylene nanocomposites based on semi-crystalline poly[4,4'-bis (4″-aminophenoxy)diphenyl]imide 1,3-bis (3',4-dicarboxyphenoxy) benzene, modified by ZrO2 nanostars. Experiments were conducted using quantitative nanomechanical mapping (QNM) mode of atomic force microscopy (AFM) at the surface areas where holes were formed after falling out of inorganic particles. It was found that adhesion of AFM cantilever to the polymer surface is higher inside the hole than outside. This can be attributed to the presence of polar groups near ZrO2 nanoparticle. QNM measurements revealed that polymer matrix has increased rigidity in the vicinity of the nanoparticles. Influence of ZrO2 nanoparticles on the structure and thermal properties of semi-crystalline polyheteroarylene matrix was studied with wide-angle X-ray scattering, scanning electron microscopy, and differential scanning calorimetry.

6.
Polymers (Basel) ; 8(10)2016 Oct 17.
Article in English | MEDLINE | ID: mdl-30974642

ABSTRACT

Copolyamides with anthrazoline units in the backbone (coPA) were synthesized and dense nonporous films were prepared by solvent evaporation. Glass transition temperature, density, and fractional free volume were determined for the dense nonporous films composed of polyamide and two of its copolymers containing 20 and 30 mol % anthrazoline units in the backbone. Transport properties of the polymer films were estimated by sorption and pervaporation tests toward methanol, toluene, and their mixtures. An increase in anthrazoline fragments content leads to an increasing degree of methanol sorption but to a decreasing degree of toluene sorption. Pervaporation of a methanol⁻toluene mixture was studied over a wide range of feed concentration (10⁻90 wt % methanol). Maximal separation factor was observed for coPA-20 containing 20 mol % fragments with anthrazoline units; maximal total flux was observed for coPA-30 with the highest fractional free volume.

7.
Polymers (Basel) ; 8(11)2016 Nov 18.
Article in English | MEDLINE | ID: mdl-30974679

ABSTRACT

Mixed-matrix membranes based on amorphous and semi-crystalline polyimides with zirconium dioxide (ZrO2) nanostars were synthesized. Amorphous poly(4,4'-oxydiphenylenepyromellitimide) and semi-crystalline polyimide prepared from 1,4-bis(4-aminophenoxy)benzene and 4,4'-oxydiphthalic anhydride were used. The effect of ZrO2 nanostars on the structure and morphology of nanocomposite membranes was studied by wide-angle X-ray scattering, scanning electron microscopy, atomic force microscopy, and contact angle measurements. Thermal properties and stability were investigated by thermogravimetric analysis and differential scanning calorimetry. Transport properties of hybrid membranes containing 5 wt % ZrO2 were tested for pervaporation of a mixture of butanol⁻water with 10 wt % H2O content. It was found that a significant amount of the ZrO2 added to the semi-crystalline polyimide is encapsulated inside spherulites. Therefore, the beneficial influence of inorganic filler on the selectivity of mixed-matrix membrane with respect to water was hampered. Mixed-matrix membranes based on amorphous polymer demonstrated the best performance, because water molecules had higher access to inorganic particles.

SELECTION OF CITATIONS
SEARCH DETAIL
...