Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542218

ABSTRACT

This study addresses the pressing issues of energy production and consumption, in line with global sustainable development goals. Focusing on the potential of alcohols as "green" alternatives to traditional fossil fuels, especially in biofuel applications, we investigate the thermochemical properties of three alcohols (n-propanol, n-butanol, n-pentanol) blended with sunflower oil. The calorimetric analysis allows for the experimental determination of excess enthalpies in pseudo-binary mixtures at 303.15 K, revealing similarities in the trends of the curves (dependence on concentrations) but with different values for the excess enthalpies for each mixture. Despite the structural differences of the alcohols studied, the molar excess enthalpy values exhibit uniformity, suggesting consistent mixing behavior. The peak values of excess enthalpies for systems with sunflower oil and n-propanol, n-butanol and n-pentanol are, respectively, 3255.2 J/mole, 3297.4 J/mole and 3150.1 J/mole. Both the NRTL and Redlich-Kister equations show satisfactory agreement with the obtained values.


Subject(s)
Alcohols , Biofuels , Pentanols , Alcohols/chemistry , Sunflower Oil , 1-Propanol , 1-Butanol
2.
Entropy (Basel) ; 25(7)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37509916

ABSTRACT

In this paper, we have considered some elements of the classical phenomenological theory of thermodynamic stability, which seem controversial and ambiguous. The main focus is on the conditions of the stability boundary; a new version of the derivation of the relations defining the specified boundary is proposed. Although the final results, in general, coincide with the classical relations, the described approach, from our point of view, provides a clearer and more accurate idea of the stability conditions and their boundaries.

3.
Int J Mol Sci ; 24(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36982213

ABSTRACT

The data on molar excess enthalpies, HmE, for the binary mixtures acetic acid + n-butanol, acetic acid + n-butyl acetate and n-butanol + n-butyl acetate at 313.15 K and atmospheric pressure were obtained with use of the C80 isothermal mixing calorimeter (Setaram). The correlation of the data was carried out using the NRTL model and Redlich-Kister equation. A comparative analysis with the literature data on all available binary subsystems of the quaternary system was carried out. Other thermodynamic properties (Cp,mE, SmE, ΔmixSm, GmE and ΔmixGm) of the binary systems were estimated using literature data and well-known formulas of classical thermodynamics.


Subject(s)
1-Butanol , Butanols , Acetic Acid , Water , Thermodynamics , Atmospheric Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...