Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 586: 56-66, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33143850

ABSTRACT

We report on the physicochemical changes of infant formula (IF) powder and its macronutrients (lactose, fat, and proteins) under given storage conditions. Colloidal (particle size distribution, emulsion stability and sedimentation), morphological (scanning electron microscopy), thermal (differential scanning calorimetry), structural (synchrotron X-ray diffraction) as well as surface and chemical (X-ray photoelectron and Fourier transform infrared spectroscopies) data were used to elucidate the main cause-effect relationships for microstructural, functional, and other properties of the IF powder. The wetting behavior of the powder was found to be significantly affected by water activity (aw) during storage (aw in the range between 0.24 and 0.42). At the highest aw (aw = 0.42), lactose crystallization and fat migration took place, leading to changes on the surface of the particles that reduced powder wettability. We propose possible mechanisms to explain the observations, associated with changes in protein conformation. Interestingly, no major changes in the pH and colloidal characteristics, including particle size and distribution, stability, and sedimentation were observed in the reconstituted IF powder upon storage for 6 weeks. The results indicated a negligible contribution from possible Maillard reactions. We propose leading microstructural and wetting characterization to troubleshoot changes in the quality of IF powder, most relevant from the perspective of reconstitution after storage.


Subject(s)
Infant Formula , Water , Calorimetry, Differential Scanning , Humans , Infant , Lactose , Microscopy, Electron, Scanning , Particle Size , Powders
2.
J Agric Food Chem ; 62(10): 2284-8, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24559153

ABSTRACT

Scanning electrochemical microscopy (SECM) combined with a Langmuir trough was used for studying oxygen transfer across protein films at an air-water interface. The method allows the comparison of the oxygen permeability of different emulsifiers without any concerns of interference of atmospheric oxygen. Two milk proteins, ß-lactoglobulin and ß-casein, were compared, and the permeabilities obtained were for ß-casein PD ≈ 2.2 × 10(-7) cm(2)/s and for ß-lactoglobulin PD ≈ 0.6 × 10(-7) cm(2)/s, which correspond to the lowest limit of the diffusion coefficients and are 2 orders of magnitude lower than the diffusion coefficient of oxygen in water, yet several orders of magnitude higher than previously reported for milk protein films. The method allows characterization of the oxygen barrier properties of liquid interfacial films, which is of crucial importance for understanding the role of the interface in the inhibition of oxygen transport and developing modified interfaces with higher oxygen blocking efficacy.


Subject(s)
Milk Proteins/chemistry , Oxygen/chemistry , Air , Caseins/chemistry , Lactoglobulins/chemistry , Microscopy, Electrochemical, Scanning , Models, Chemical , Permeability , Water/chemistry
4.
J Am Chem Soc ; 130(33): 11049-55, 2008 Aug 20.
Article in English | MEDLINE | ID: mdl-18652456

ABSTRACT

A synthesis strategy to obtain monodisperse hexanethiolate-protected Au38 clusters based on their resistance to etching upon exposure to a hyperexcess of thiol is reported. The reduction time in the standard Brust-Schiffrin two-phase synthesis was optimized such that Au38 were the only clusters that were fully passivated by the thiol monolayer which leaves larger particles vulnerable to etching by excess thiol. The isolated Au38 was characterized by mass spectrometry, thermogravimetric analysis, optical spectroscopy, and electrochemical techniques giving Au38(SC6)22 as the molecular formula for the cluster. These ultrasmall Au clusters behave analogously to molecules with a wide energy gap between occupied (HOMO) and unoccupied levels (LUMO) and undergo single-electron charging at room temperature in electrochemical experiments. Electrochemistry provides an elegant means to study the electronic structure and the chemical stability of the clusters at different charge states. We used cyclic voltammetry and scanning electrochemical microscopy to unequivocally demonstrate that Au38 can be reversibly oxidized to charge states z = +1 or +2; however, reduction to z = -1 leads to desorption of the protecting thiolate monolayer. Although this reductive desorption of thiol from the cluster surface is superficially analogous to electrochemical desorption of planar self-assembled monolayers (SAMs) from macroscopic electrodes, the molecular details of the process are likely to be complicated based on the current view that the thiolate monolayer in clusters is in fact composed of polymeric Au-S complexes.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Organogold Compounds/chemical synthesis , Sulfhydryl Compounds/chemistry , Electrochemistry , Electrodes , Mass Spectrometry , Microscopy, Electron, Scanning , Organogold Compounds/chemistry , Oxidation-Reduction , Surface Properties , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...