Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(14): 10471-10493, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38506166

ABSTRACT

Ion channels, intricate protein structures facilitating precise ion passage across cell membranes, are pivotal for vital cellular functions. Inspired by the remarkable capabilities of biological ion channels, the scientific community has ventured into replicating these principles in fully abiotic solid-state nanochannels (SSNs). Since the gating mechanisms of SSNs rely on variations in the physicochemical properties of the channel surface, the modification of their internal architecture and chemistry constitutes a powerful strategy to control the transport properties and, consequently, render specific functionalities. In this framework, both the design of the nanofluidic platform and the subsequent selection and attachment of different building blocks gain special attention. Similar to biological ion channels, functional SSNs offer the potential to finely modulate ion transport in response to various stimuli, leading to innovations in a variety of fields. This comprehensive review delves into the intricate world of ion transport across stimuli-responsive SSNs, focusing on the development of external voltage-controlled nanofluidic devices. This kind of field-effect nanofluidic technology has attracted special interest due to the possibility of real-time reconfiguration of the ion transport with a non-invasive strategy. These properties have found interesting applications in drug delivery, biosensing, and nanoelectronics. This document will address the fundamental principles of ion transport through SSNs and the construction, modification, and applications of external voltage-controlled SSNs. It will also address future challenges and prospects, offering a comprehensive perspective on this evolving field.

2.
Nanotechnology ; 30(27): 274001, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-30884471

ABSTRACT

Small angle x-ray scattering was used to study the morphology of conical structures formed in thin films of amorphous SiO2. Samples were irradiated with 1.1 GeV Au ions at the GSI UNILAC in Darmstadt, Germany, and with 185, 89 and 54 MeV Au ions at the Heavy Ion Accelerator Facility at ANU in Canberra, Australia. The irradiated material was subsequently etched in HF using two different etchant concentrations over a series of etch times to reveal conically shaped etched channels of various sizes. Synchrotron based SAXS measurements were used to characterize both the radial and axial ion track etch rates with unprecedented precision. The results show that the ion energy has a significant effect on the morphology of the etched channels, and that at short etch times resulting in very small cones, the increased etching rate of the damaged region in the radial direction with respect to the ion trajectory is significant.

3.
Nanoscale ; 9(9): 3169-3179, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28221383

ABSTRACT

The Seebeck coefficient and electrical resistance of Bi1-xSbx nanowire arrays electrodeposited in etched ion-track membranes have been investigated as a function of wire diameter (40-750 nm) and composition (0 ≤ x ≤ 1). The experimental data reveal a non-monotonic dependence between thermopower and wire diameter for three different compositions. Thus, the thermopower values decrease with decreasing wire diameter, exhibiting a minimum around ∼60 nm. This non-monotonic dependence of the Seebeck coefficient is attributed to the interplay of surface and bulk states. On the one hand, the metallic properties of the surface states can contribute to decreasing the thermopower of the nanostructure with increasing surface-to-volume ratio. On the other hand, for wires thinner than ∼60 nm, the relative increase of the thermopower can be tentatively attributed to the presence of quantum-size effects on both surface and bulk states. These measurements contribute to a better understanding of the interplay between bulk and surface states in nanostructures, and indicate that the decrease of Seebeck coefficient with decreasing diameter caused by the presence of surfaces states can possibly be overcome for even thinner nanowires.

4.
ACS Appl Mater Interfaces ; 8(1): 472-9, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26666466

ABSTRACT

Metal nanostructures with conical shape, vertical alignment, large ratio of cone height and curvature radius at the apex, controlled cone angle, and single-crystal structure are ideal candidates for enhancing field electron-emission efficiency with additional merits, such as good mechanical and thermal stability. However, fabrication of such nanostructures possessing all these features is challenging. Here, we report on the controlled fabrication of large scale, vertically aligned, and mechanically self-supported single-crystal Cu nanocones with controlled cone angle and enhanced field emission. The Cu nanocones were fabricated by ion-track templates in combination with electrochemical deposition. Their cone angle is controlled in the range from 0.3° to 6.2° by asymmetrically selective etching of the ion tracks and the minimum tip curvature diameter reaches down to 6 nm. The field emission measurements show that the turn-on electric field of the Cu nanocone field emitters can be as low as 1.9 V/µm at current density of 10 µA/cm(2) (a record low value for Cu nanostructures, to the best of our knowledge). The maximum field enhancement factor we measured was as large as 6068, indicating that the Cu nanocones are promising candidates for field emission applications.

5.
Beilstein J Nanotechnol ; 6: 472-9, 2015.
Article in English | MEDLINE | ID: mdl-25821688

ABSTRACT

Polycarbonate etched ion-track membranes with about 30 µm long and 50 nm wide cylindrical channels were conformally coated with SiO2 by atomic layer deposition (ALD). The process was performed at 50 °C to avoid thermal damage to the polymer membrane. Analysis of the coated membranes by small angle X-ray scattering (SAXS) reveals a homogeneous, conformal layer of SiO2 in the channels at a deposition rate of 1.7-1.8 Å per ALD cycle. Characterization by infrared and X-ray photoelectron spectroscopy (XPS) confirms the stoichiometric composition of the SiO2 films. Detailed XPS analysis reveals that the mechanism of SiO2 formation is based on subsurface crystal growth. By dissolving the polymer, the silica nanotubes are released from the ion-track membrane. The thickness of the tube wall is well controlled by the ALD process. Because the track-etched channels exhibited diameters in the range of nanometres and lengths in the range of micrometres, cylindrical tubes with an aspect ratio as large as 3000 have been produced.

6.
Nanotechnology ; 23(47): 475710, 2012 Nov 30.
Article in English | MEDLINE | ID: mdl-23117337

ABSTRACT

Pt nanowires were prepared by template electrodeposition using ion track etched polymer membranes and analysed with respect to their thermal stability. Driven by Rayleigh instability, the polycrystalline Pt nanostructures experienced structural transformations and finally fragmented into linear chains of nanospheres at temperatures much below the melting point of bulk Pt. Morphological changes were systematically studied by electron microscopy and compared with previously reported results on other metal nanowires and theoretical predictions. In addition, nanowires could readily be interconnected to two-dimensional assemblies by taking advantage of the rapid diffusion processes. This study will help to predict the durability of integrated nanowires and contributes to the understanding of thermal-induced transformations for polycrystalline nanowires.

7.
J Phys Condens Matter ; 21(20): 205301, 2009 May 20.
Article in English | MEDLINE | ID: mdl-21825526

ABSTRACT

We present low temperature resistance R(T) and magnetoresistance measurements for Bi nanowires with diameters between 100 and 500 nm, which are close to being single-crystalline. The nanowires were fabricated by electrochemical deposition in pores of polycarbonate membranes. R(T) varies as T(2) in the low temperature range 1.5 K

SELECTION OF CITATIONS
SEARCH DETAIL
...