Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 23(6)2018 06 10.
Article in English | MEDLINE | ID: mdl-29890780

ABSTRACT

The complete synthesis, optimization, purification, functionalization and evaluation of vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) was reported for potential application in dexamethasone delivery to the ischemic brain tissue. The conditions for high yield were optimized and carbon nanotubes functionalized and PEGylated prior to dexamethasone loading. Morphological changes were confirmed by SEM and TEM. Addition of functional groups to MWCNTs was demonstrated by FTIR. Thermal stability reduced following MWCNTs functionalization as demonstrated in TGA. The presence of carbon at 2θ of 25° and iron at 2θ of 45° in MWCNTs was illustrated by XRD. Polydispersive index and zeta potential were found to be 0.261 and −15.0 mV, respectively. Dexamethasone release increased by 55%, 65% and 95% in pH of 7.4, 6.5 and 5.5 respectively as evaluated by UV-VIS. The functionalized VA-MWCNTs were demonstrated to be less toxic in PC-12 cells in the concentration range from 20 to 20,000 µg/mL. These findings have demonstrated the potential of VA-MWCNTs in the enhancement of fast and prolonged release of dexamethasone which could lead to the effective treatment of ischemic stroke. More work is under way for targeting ischemic sites using atrial natriuretic peptide antibody in stroke rats.


Subject(s)
Brain Ischemia/prevention & control , Dexamethasone/chemistry , Dexamethasone/pharmacology , Nanotubes, Carbon/chemistry , Polyethylene Glycols/chemistry , Stroke/prevention & control , Animals , Catalysis , Hot Temperature , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , PC12 Cells , Rats , Spectrum Analysis/methods , X-Ray Diffraction
2.
Mar Drugs ; 15(8)2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28812999

ABSTRACT

A microporous hydrogel was developed using sodium alginate (alg) and 4-aminosalicylic acid (4-ASA). The synthesized hydrogel was characterized using various analytical techniques such as Fourier transform infrared spectroscopy (FTIR), Carbon-13 nuclear magnetic resonance (13C-NMR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). Additonal carboxyl and hydroxyl functional groups of 4-ASA provided significant lubrication and stress-triggered sol-gel transition to the conjugated hydrogel. In addition, cytotoxicity analysis was undertaken on the conjugated hydrogel using human dermal fibroblast-adult (HDFa) cells, displaying non-toxic characteristics. Drug release profiles displaying 49.6% in the first 8 h and 97.5% within 72 h, similar to the native polymer (42.8% in first 8 h and 90.1% within 72 h). Under applied external stimuli, the modified hydrogel displayed significant gelling properties and structure deformation/recovery behaviour, confirmed using rheological evaluation (viscosity and thixotropic area of 8095.3 mPas and 26.23%, respectively). The modified hydrogel, thus, offers great possibility for designing smart synovial fluids as a biomimetic aqueous lubricant for joint-related injuries and arthritis-induced conditions. In addtion, the combination of thixotropy, non-toxicity, and drug release capabilities enables potential viscosupplementation for clinical application.


Subject(s)
Aminosalicylic Acid/therapeutic use , Arthritis , Hydrogel, Polyethylene Glycol Dimethacrylate/therapeutic use , Alginates , Aminosalicylic Acid/chemical synthesis , Aminosalicylic Acid/chemistry , Arthritis/complications , Arthritis/drug therapy , Calorimetry, Differential Scanning , Carbon Isotopes , Drug Liberation , Glucuronic Acid , Hexuronic Acids , Humans , Nuclear Magnetic Resonance, Biomolecular , Viscosupplementation
3.
Int J Pharm ; 448(1): 267-81, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23535346

ABSTRACT

The purpose of this study was to design ligand-functionalized nanoliposomes that are proficient in providing effective intracellular delivery of an alkaloid drug (galantamine) into PC12 neuronal cells in response to managing Alzheimer's disease (AD). Ligand-functionalized nanoliposomes were produced and validated for their physicochemical properties, in silico molecular mechanics energy relationships, ex vivo cytotoxicity, peptide coupling efficiency (PCE), drug entrapment efficiency (DEE), drug release, fluorometry and confocal microscopy. Particle sizes of the nanoliposomes ranged from 127 nm to 165 nm (PdI=0.39-0.03), zeta potential values of -18 mV to -36 mV, PCE from 40% to 78% while DEE ranged from 42% to 79%. The surface morphology of the nanoliposomes was stable, spherically and uniform in shape. Thermal behavior and Fourier transform infrared (FTIR) analyses confirmed that galantamine and the peptide-ligand were incorporated into the inner core and surface of the nanoliposomes, respectively. The optimized formulation showed sustained drug release (30% of drug released within 48 h). Fluorometry and confocal microscopy revealed that the ligand-functionalized nanoliposomes facilitated galantamine uptake into PC12 neuronal cells via the Serpin Enzyme Complex Receptor in a mediated manner. CytoTox-Glo™ cytotoxicity assay established the low cytotoxicity on PC12 neuronal cells when exposed to native nanoliposomes and the ligand-functionalized nanoliposomes. Response surface analysis demonstrated there was a high degree of correlation between the experimental and fitted values. Furthermore, ex vivo studies showed that the high galantamine accumulation into PC12 neuronal cells was influenced by the post-engineering of peptides on the surface of the galantamine-loaded nanoliposomes. MMER analysis aptly corroborated the experimental findings.


Subject(s)
Galantamine/administration & dosage , Nanoparticles/chemistry , Nootropic Agents/administration & dosage , Oligopeptides/chemistry , Animals , Galantamine/chemistry , Ligands , Lipids/chemistry , Liposomes , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Nootropic Agents/chemistry , PC12 Cells , Rats , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...