Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
FASEB J ; 38(13): e23775, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38967223

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic disease of the gastrointestinal tract affecting millions of people. Here, we investigated the expression and functions of poly(ADP-ribose) polymerase 14 (Parp14), an important regulatory protein in immune cells, with an IBD patient cohort as well as two mouse colitis models, that is, IBD-mimicking oral dextran sulfate sodium (DSS) exposure and oral Salmonella infection. Parp14 was expressed in the human colon by cells in the lamina propria, but, in particular, by the epithelial cells with a granular staining pattern in the cytosol. The same expression pattern was evidenced in both mouse models. Parp14-deficiency caused increased rectal bleeding as well as stronger epithelial erosion, Goblet cell loss, and immune cell infiltration in DSS-exposed mice. The absence of Parp14 did not affect the mouse colon bacterial microbiota. Also, the colon leukocyte populations of Parp14-deficient mice were normal. In contrast, bulk tissue RNA-Seq demonstrated that the colon transcriptomes of Parp14-deficient mice were dominated by abnormalities in inflammation and infection responses both prior and after the DSS exposure. Overall, the data indicate that Parp14 has an important role in the maintenance of colon epithelial barrier integrity. The prognostic and predictive biomarker potential of Parp14 in IBD merits further investigation.


Subject(s)
Colitis , Dextran Sulfate , Mice, Inbred C57BL , Poly(ADP-ribose) Polymerases , Animals , Female , Humans , Male , Mice , Colitis/genetics , Colitis/chemically induced , Colitis/pathology , Colon/pathology , Colon/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Gastrointestinal Microbiome , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Inflammatory Bowel Diseases/metabolism , Mice, Knockout , Poly(ADP-ribose) Polymerases/metabolism , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/deficiency
2.
Pharmacol Res Perspect ; 12(4): e1234, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38961539

ABSTRACT

The association of hormonal contraception with increased risk of inflammatory bowel disease (IBD) observed in females suggests involvement of ovarian hormones, such as estradiol, and the estrogen receptors in the progression of intestinal inflammation. Here, we investigated the effects of prophylactic SERM2 and estradiol supplementation in dextran sulfate sodium-induced colitis using mice with intact ovaries and ovariectomized (OVX) female mice. We found that graded colitis score was threefold reduced in the OVX mice, compared to mice with intact ovaries. Estradiol supplementation, however, aggravated the colitis in OVX mice, increasing the colitis score to a similar level than what was observed in the intact mice. Further, we observed that immune infiltration and gene expression of inflammatory interleukins Il1b, Il6, and Il17a were up to 200-fold increased in estradiol supplemented OVX colitis mice, while a mild but consistent decrease was observed by SERM2 treatment in intact animals. Additionally, cyclo-oxygenase 2 induction was increased in the colon of colitis mice, in correlation with increased serum estradiol levels. Measured antagonist properties of SERM2, together with the other results presented here, indicates an exaggerating role of ERα signaling in colitis. Our results contribute to the knowledge of ovarian hormone effects in colitis and encourage further research on the potential use of ER antagonists in the colon, in order to alleviate inflammation.


Subject(s)
Colitis , Dextran Sulfate , Estradiol , Estrogen Receptor alpha , Ovariectomy , Animals , Female , Estrogen Receptor alpha/metabolism , Colitis/chemically induced , Colitis/metabolism , Colitis/drug therapy , Mice , Estradiol/pharmacology , Estradiol/blood , Mice, Inbred C57BL , Estrogens/pharmacology , Cyclooxygenase 2/metabolism , Disease Models, Animal , Interleukin-17/metabolism , Colon/pathology , Colon/drug effects , Colon/metabolism , Interleukin-6/metabolism , Interleukin-1beta/metabolism
3.
Article in English | MEDLINE | ID: mdl-38860856

ABSTRACT

Keratin intermediate filaments form dynamic filamentous networks, which provide mechanical stability, scaffolding and protection against stress to epithelial cells. Keratins and other intermediate filaments have been increasingly linked to the regulation of mitochondrial function and homeostasis in different tissues and cell types. While deletion of keratin 8 (K8‒/‒) in mouse colon elicits a colitis-like phenotype, epithelial hyperproliferation and blunted mitochondrial ketogenesis, the role for K8 in colonocyte mitochondrial function and energy metabolism is unknown. We used two K8 knockout mouse models and CRISPR/Cas9 K8‒/‒ colorectal adenocarcinoma Caco-2 cells to answer this question. The results show that K8‒/‒ colonocyte mitochondria in vivo are smaller and rounder, and that mitochondrial motility is increased in K8‒/‒ Caco-2 cells. Furthermore, K8-/- Caco-2 cells displayed diminished mitochondrial respiration and decreased mitochondrial membrane potential compared to controls, whereas glycolysis was not affected. The levels of mitochondrial respiratory chain complex proteins and mitochondrial regulatory proteins mitofusin-2 and prohibitin were decreased both in vitro in K8‒/‒ Caco-2 cells and in vivo in K8‒/‒ mouse colonocytes, and re-expression of K8 into K8‒/‒ Caco-2 cells normalizes the mitofusin-2 levels. Mitochondrial Ca2+ is an important regulator of mitochondrial energy metabolism and homeostasis, and Caco-2 cells lacking K8 displayed decreased levels and altered dynamics of mitochondrial matrix and cytoplasmic Ca2+. In summary, these novel findings attribute an important role for colonocyte K8 in stabilizing mitochondrial shape and movement and maintaining mitochondrial respiration and Ca2+ signaling. Further, how these metabolically compromised colonocytes are capable of hyperproliferating presents an intriguing question for future studies.

4.
Article in English | MEDLINE | ID: mdl-38912736

ABSTRACT

Islet ß-cell dysfunction is an underlying factor for type I diabetes (T1D) development. Insulin sensing and secretion is tightly regulated in ß-cells at multiple subcellular levels. The epithelial intermediate filament protein keratin (K) 8 is the main ß-cell keratin, constituting the filament network with K18. To identify the cell-autonomous functions of K8 in ß-cells, mice with targeted deletion of ß-cell K8 (K8flox/flox; Ins-Cre) were analyzed for islet morphology, ultrastructure and integrity, as well as blood glucose regulation and streptozotocin (STZ)-induced diabetes development. Glucose transporter 2 (GLUT2) localization was studied in ß-cells in vivo and in MIN6 cells with intact or disrupted K8/K18 filaments. Loss of ß-cell K8 leads to a major reduction in K18. Islets without ß-cell K8 are more fragile and these ß-cells display disjointed plasma membrane organization with less membranous E-cadherin and smaller mitochondria, with diffuse cristae. Lack of ß-cell K8 also leads to a reduced glucose stimulated insulin secretion response in vivo, despite undisturbed systemic blood glucose regulation. K8flox/flox; Ins-Cre mice have a decreased sensitivity to STZ compared to K8 wild-type mice, which is in line with decreased membranous GLUT2 expression observed in vivo, as GLUT2 is required for STZ uptake in ß-cells. In vitro, MIN6 cell plasma membrane GLUT2 is rescued in cells overexpressing K8/K18 filaments, but mistargeted in cells with disrupted K8/K18 filaments. ß-cell K8 is required for islet and ß-cell structural integrity, normal mitochondrial morphology and GLUT2 plasma membrane targeting, and has implications on STZ sensitivity as well as systemic insulin responses.

5.
Proteomics ; 24(14): e2300340, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38873899

ABSTRACT

The breast milk composition includes a multitude of bioactive factors such as viable cells, lipids and proteins. Measuring the levels of specific proteins in breast milk plasma can be challenging because of the large dynamic range of protein concentrations and the presence of interfering substances. Therefore, most proteomic studies of breast milk have been able to identify under 1000 proteins. Optimised procedures and the latest separation technologies used in milk proteome research could lead to more precise knowledge of breast milk proteome. This study (n = 53) utilizes three different protein quantification methods, including direct DIA, library-based DIA method and a hybrid method combining direct DIA and library-based DIA. On average we identified 2400 proteins by hybrid method. By applying these methods, we quantified body mass index (BMI) associated variation in breast milk proteomes. There were 210 significantly different proteins when comparing the breast milk proteome of obese and overweight mothers. In addition, we analysed a small cohort (n = 5, randomly selected from 53 samples) by high field asymmetric waveform ion mobility spectrometry (FAIMS). FAIMS coupled with the Orbitrap Fusion Lumos mass spectrometer, which led to 41.7% higher number of protein identifications compared to Q Exactive HF mass spectrometer.


Subject(s)
Milk, Human , Proteome , Proteomics , Tandem Mass Spectrometry , Milk, Human/chemistry , Humans , Tandem Mass Spectrometry/methods , Proteome/analysis , Female , Chromatography, Liquid/methods , Proteomics/methods , Milk Proteins/analysis , Ion Mobility Spectrometry/methods , Adult , Liquid Chromatography-Mass Spectrometry
6.
Am J Physiol Gastrointest Liver Physiol ; 326(1): G67-G77, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37962942

ABSTRACT

Keratins are epithelial intermediate filament proteins that play a crucial role in cellular stress protection, with K8 being the most abundant in the colon. The intestinal epithelial-specific K8-deficient mouse model (K8flox/flox;Villin-Cre) exhibits characteristics of inflammatory bowel disease, including diarrhea, crypt erosion, hyperproliferation, and decreased barrier function. Nevertheless, the order in which these events occur and whether they are a direct cause of K8 loss or a consequence of one event inducing another remains unexplored. Increased knowledge about early events in the disruption of colon epithelial integrity would help to understand the early pathology of inflammatory and functional colon disorders and develop preclinical models and diagnostics of colonic diseases. Here, we aimed to characterize the order of physiological events after Krt8 loss by utilizing K8flox/flox;Villin-CreERt2 mice with tamoxifen-inducible Krt8 deletion in intestinal epithelial cells, and assess stool analysis as a noninvasive method to monitor real-time gene expression changes following Krt8 loss. K8 protein was significantly decreased within a day after induction, followed by its binding partners, K18 and K19 from day 4 onward. The sequential colonic K8 downregulation in adult mice leads to immediate diarrhea and crypt elongation with activation of proliferation signaling, followed by crypt loss and increased neutrophil activity within 6-8 days, highlighting impaired water balance and crypt elongation as the earliest colonic changes upon Krt8 loss. Furthermore, epithelial gene expression patterns were comparable between colon tissue and stool samples, demonstrating the feasibility of noninvasive monitoring of gut epithelia in preclinical research utilizing Cre-LoxP-based intestinal disease models.NEW & NOTEWORTHY Understanding the order in which physiological and molecular events occur helps to recognize the onset of diseases and improve their preclinical models. We utilized Cre-Lox-based inducible keratin 8 deletion in mouse intestinal epithelium to characterize the earliest events after keratin 8 loss leading to colitis. These include diarrhea and crypt elongation, followed by erosion and neutrophil activity. Our results also support noninvasive methodology for monitoring colon diseases in preclinical models.


Subject(s)
Colitis , Keratin-8 , Animals , Mice , Colitis/genetics , Diarrhea , Keratin-18/genetics , Keratin-8/genetics , Keratin-8/metabolism , Keratins/chemistry , Keratins/genetics
7.
Curr Opin Cell Biol ; 86: 102282, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38000362

ABSTRACT

Keratin (K) intermediate filaments are attached to desmosomes and constitute the orchestrators of epithelial cell and tissue architecture. While their relevance in the epidermis is well recognized, our review focuses on their emerging importance in internal epithelia. The significance of keratin-desmosome scaffolds (KDSs) in the intestine is highlighted by transgenic mouse models and individuals with inflammatory bowel disease who display profound KDS alterations. In lung, high K8 expression defines a transitional cell subset during regeneration, and K8 variants are associated with idiopathic pulmonary fibrosis. Inherited variants in desmosomal proteins are overrepresented in idiopathic lung fibrosis, and familiar eosinophilic esophagitis. K18 serum fragments are established hepatocellular injury markers that correlate with the extent of histological inflammation. K17 expression is modified in multiple tumors, and K17 levels might be of prognostic relevance. These data should spur further studies on biological roles of these versatile tissue protectors and efforts on their therapeutic targeting.


Subject(s)
Desmosomes , Keratins , Mice , Animals , Keratins/metabolism , Desmosomes/metabolism , Cytoskeleton/metabolism , Epithelium/metabolism , Intermediate Filaments/metabolism
8.
Mol Imaging Biol ; 26(2): 322-333, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38110791

ABSTRACT

PURPOSE: Inflammatory bowel disease (IBD) can be imaged with positron emission tomography (PET), but existing PET radiopharmaceuticals have limited diagnostic accuracy. Vascular adhesion protein-1 (VAP-1) is an endothelial cell surface molecule that controls leukocyte extravasation into sites of inflammation. However, the role of inflammation-induced VAP-1 expression in IBD is still unclear. Therefore, this study investigated the utility of VAP-1-targeted [68Ga]Ga-DOTA-Siglec-9 positron emission tomography/computed tomography (PET/CT) for assessing inflammation in two mouse models of IBD. PROCEDURES: Studies were performed using K8-/- mice that develop a chronic colitis-phenotype and C57Bl/6NCrl mice with acute intestinal inflammation chemically-induced using 2.5% dextran sodium sulfate (DSS) in drinking water. In both diseased and control mice, uptake of the VAP-1-targeting peptide [68Ga]Ga-DOTA-Siglec-9 was assessed in intestinal regions of interest using in vivo PET/CT, after which ex vivo gamma counting, digital autoradiography, and histopathological analyses were performed. Immunofluorescence staining was performed to determine VAP-1-expression in the intestine, including in samples from patients with ulcerative colitis. RESULTS: Intestinal inflammation could be visualized by [68Ga]Ga-DOTA-Siglec-9 PET/CT in two murine models of IBD. In both models, the in vivo PET/CT and ex vivo studies of [68Ga]Ga-DOTA-Siglec-9 uptake were significantly higher than in control mice. The in vivo uptake was increased on average 1.4-fold in the DSS model and 2.0-fold in the K8-/- model. Immunofluorescence staining revealed strong expression of VAP-1 in the inflamed intestines of both mice and patients. CONCLUSIONS: This study suggests that the VAP-1-targeting [68Ga]Ga-DOTA-Siglec-9 PET tracer is a promising tool for non-invasive imaging of intestinal inflammation. Future studies in patients with IBD and evaluation of the potential value of [68Ga]Ga-DOTA-Siglec-9 in diagnosis and monitoring of the disease are warranted.


Subject(s)
Heterocyclic Compounds, 1-Ring , Inflammatory Bowel Diseases , Positron Emission Tomography Computed Tomography , Humans , Mice , Animals , Positron Emission Tomography Computed Tomography/methods , Gallium Radioisotopes/chemistry , Disease Models, Animal , Positron-Emission Tomography/methods , Inflammation , Sialic Acid Binding Immunoglobulin-like Lectins/chemistry , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/pharmacology
9.
J Clin Invest ; 133(22)2023 11 15.
Article in English | MEDLINE | ID: mdl-37768734

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease arising from impaired regeneration of the alveolar epithelium after injury. During regeneration, type 2 alveolar epithelial cells (AEC2s) assume a transitional state that upregulates multiple keratins and ultimately differentiate into AEC1s. In IPF, transitional AECs accumulate with ineffectual AEC1 differentiation. However, whether and how transitional cells cause fibrosis, whether keratins regulate transitional cell accumulation and fibrosis, and why transitional AECs and fibrosis resolve in mouse models but accumulate in IPF are unclear. Here, we show that human keratin 8 (KRT8) genetic variants were associated with IPF. Krt8-/- mice were protected from fibrosis and accumulation of the transitional state. Keratin 8 (K8) regulated the expression of macrophage chemokines and macrophage recruitment. Profibrotic macrophages and myofibroblasts promoted the accumulation of transitional AECs, establishing a K8-dependent positive feedback loop driving fibrogenesis. Finally, rare murine transitional AECs were highly senescent and basaloid and may not differentiate into AEC1s, recapitulating the aberrant basaloid state in human IPF. We conclude that transitional AECs induced and were maintained by fibrosis in a K8-dependent manner; in mice, most transitional cells and fibrosis resolved, whereas in human IPF, transitional AECs evolved into an aberrant basaloid state that persisted with progressive fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Keratin-8 , Humans , Animals , Mice , Keratin-8/metabolism , Alveolar Epithelial Cells , Idiopathic Pulmonary Fibrosis/metabolism , Epithelial Cells/metabolism , Cell Differentiation
10.
Sci Rep ; 13(1): 11979, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37488244

ABSTRACT

The diagnosis of inflammatory bowel diseases (IBD) may be challenging and their clinical course, characterized by relapses and spontaneous or drug-induced remissions, is difficult to predict. Novel prognostic biomarkers are needed. Keratin 7 (K7) is a cytoskeletal intermediate filament protein which is not normally expressed in the colonic epithelium. It was recently shown that K7 expression in the colonic epithelium is associated with ulcerative colitis and Crohn's disease, the two main subtypes of IBD. Here we investigated IBD associated K7 neo-expression in different regions of colon and terminal ileum. The correlation of the K7 expression with the inflammatory activity of the epithelium was analyzed in each region. The prognostic value of K7 was estimated by comparing the clinical disease activity after 3 years with the K7 expression at the time of enrollment. Our data shows that the level of K7 expression in inflamed epithelium varies depending on the anatomical region and it is the most pronounced in ascending and descending colon, but it did not predict the severity of IBD for the following 3 years. These results warrant future studies focusing on the biological role of K7 in colon and its utilization as potential IBD biomarker.


Subject(s)
Inflammatory Bowel Diseases , Prognosis , Follow-Up Studies , Keratin-7 , Colon , Intermediate Filament Proteins , Epithelium
11.
Mol Nutr Food Res ; 67(15): e2200446, 2023 08.
Article in English | MEDLINE | ID: mdl-37326413

ABSTRACT

SCOPE: Modifying the composition of colostrum by external factors may provide opportunities to improve the infant's health. Here, we evaluated how fish oil and/or probiotics supplementation modify concentrations of colostrum immune mediators and their associations with perinatal clinical factors on mothers with overweight/obesity. METHODS AND RESULTS: Pregnant women were randomized in a double-blind manner into four intervention groups, and the supplements were consumed daily from early pregnancy onwards. Colostrum samples were collected from 187 mothers, and 16 immune mediators were measured using bead-based immunoassays. Interventions modified colostrum composition; the fish oil+probiotics group had higher concentrations of IL-12p70 than probiotics+placebo and higher FMS-like tyrosine kinase 3 ligand (FLT-3L) than fish oil+placebo and probiotics+placebo (one-way analysis of variance, post-hoc Tukey's test). Although the fish oil+probiotics group had higher levels of IFNα2 compared to the fish oil+placebo group, these differences were not statistically significant after correction for multiple testing. Multivariate linear model revealed significant associations between several immune mediators and the perinatal use of medication. CONCLUSION: Fish oil/probiotics intervention exerted a minor effect on concentrations of colostrum immune mediators. However, medication during the perinatal period modulated the immune mediators. These changes in colostrum's composition may contribute to immune system development in the infant.


Subject(s)
Fish Oils , Probiotics , Female , Humans , Pregnancy , Colostrum , Dietary Supplements , Double-Blind Method , Obesity/complications , Overweight/complications , Probiotics/therapeutic use
12.
Sci Rep ; 12(1): 22213, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36564440

ABSTRACT

The clinical course of IBD, characterized by relapses and remissions, is difficult to predict. Initial diagnosis can be challenging, and novel disease markers are needed. Keratin 7 (K7) is a cytoskeletal intermediate filament protein not expressed in the colonic epithelium but has been reported in IBD-associated colorectal tumors. Our aim was to analyze whether K7 is expressed in chronic colonic inflammatory diseases and evaluate its potential as a novel biomarker. K7 was analyzed in two patient cohorts using immunohistochemistry-stained colon samples and single-cell quantitative digital pathology methods. K7 was correlated to pathological changes and clinical patient characteristics. Our data shows that K7 is expressed de novo in the colonic epithelium of ulcerative colitis and Crohn's disease IBD patients, but not in collagenous or lymphocytic colitis. K7 mRNA expression was significantly increased in colons of IBD patients compared to controls when assessed in publicly available datasets. While K7 increased in areas with inflammatory activity, it was not expressed in specific crypt compartments and did not correlate with neutrophils or stool calprotectin. K7 was increased in areas proximal to pathological alterations and was most pronounced in drug-resistant ulcerative colitis. In conclusion, colonic epithelial K7 is neo-expressed selectively in IBD patients and could be investigated for its potential as a disease biomarker.


Subject(s)
Colitis, Ulcerative , Inflammatory Bowel Diseases , Keratin-7 , Humans , Biomarkers/metabolism , Colitis, Ulcerative/pathology , Colon/pathology , Inflammatory Bowel Diseases/pathology , Keratin-7/metabolism , Neoplasm Recurrence, Local/pathology
13.
Mol Biol Cell ; 33(13): ar121, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36001365

ABSTRACT

Keratin intermediate filaments convey mechanical stability and protection against stress to epithelial cells. Keratins are essential for colon health, as seen in keratin 8 knockout (K8-/-) mice exhibiting a colitis phenotype. We hypothesized that keratins support the nuclear envelope and lamina in colonocytes. K8-/- colonocytes in vivo exhibit significantly decreased levels of lamins A/C, B1, and B2 in a colon-specific and cell-intrinsic manner. CRISPR/Cas9- or siRNA-mediated K8 knockdown in Caco-2 cells similarly decreased lamin levels, which recovered after reexpression of K8 following siRNA treatment. Nuclear area was not decreased, and roundness was only marginally increased in cells without K8. Down-regulation of K8 in adult K8flox/flox;Villin-CreERt2 mice following tamoxifen administration significantly decreased lamin levels at day 4 when K8 levels had reduced to 40%. K8 loss also led to reduced levels of plectin, LINC complex, and lamin-associated proteins. While keratins were not seen in the nucleoplasm without or with leptomycin B treatment, keratins were found intimately located at the nuclear envelope and complexed with SUN2 and lamin A. Furthermore, K8 loss in Caco-2 cells compromised nuclear membrane integrity basally and after shear stress. In conclusion, colonocyte K8 helps maintain nuclear envelope and lamina composition and contributes to nuclear integrity.


Subject(s)
Keratin-8 , Keratins , Animals , Caco-2 Cells , Colon/metabolism , Cytoskeletal Proteins/metabolism , Epithelial Cells/metabolism , Humans , Keratin-8/genetics , Keratins/metabolism , Lamin Type A/metabolism , Mice , Nuclear Envelope/metabolism , Plectin/metabolism , RNA, Small Interfering/metabolism , Tamoxifen
14.
Front Cell Dev Biol ; 10: 862237, 2022.
Article in English | MEDLINE | ID: mdl-35399505

ABSTRACT

Vimentin has been implicated in wound healing, inflammation, and cancer, but its functional contribution to intestinal diseases is poorly understood. To study how vimentin is involved during tissue injury and repair of simple epithelium, we induced colonic epithelial cell damage in the vimentin null (Vim-/-) mouse model. Vim-/- mice challenged with dextran sodium sulfate (DSS) had worse colitis manifestations than wild-type (WT) mice. Vim-/- colons also produced more reactive oxygen and nitrogen species, possibly contributing to the pathogenesis of gut inflammation and tumorigenesis than in WT mice. We subsequently describe that CD11b+ macrophages served as the mainly cellular source of reactive oxygen species (ROS) production via vimentin-ROS-pSTAT3-interleukin-6 inflammatory pathways. Further, we demonstrated that Vim-/- mice did not develop colitis-associated cancer model upon DSS treatment spontaneously but increased tumor numbers and size in the distal colon in the azoxymethane/DSS model comparing with WT mice. Thus, vimentin has a crucial role in protection from colitis induction and tumorigenesis of the colon.

15.
Cell Mol Life Sci ; 79(1): 10, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34951664

ABSTRACT

Keratin 8 (K8) is the main intestinal epithelial intermediate filament protein with proposed roles for colonic epithelial cell integrity. Here, we used mice lacking K8 in intestinal epithelial cells (floxed K8 and Villin-Cre1000 and Villin-CreERt2) to investigate the cell-specific roles of intestinal epithelial K8 for colonocyte function and pathologies. Intestinal epithelial K8 deletion decreased K8 partner proteins, K18-K20, 75-95%, and the remaining keratin filaments were located at the colonocyte apical regions with type II K7, which decreased 30%. 2-Deoxy-2-[18F]-fluoroglucose positron emission tomography in vivo imaging identified a metabolic phenotype in the lower gut of the conditional K8 knockouts. These mice developed intestinal barrier leakiness, mild diarrhea, and epithelial damage, especially in the proximal colon. Mice exhibited shifted differentiation from enterocytes to goblet cells, displayed longer crypts and an increased number of Ki67 + transit-amplifying cells in the colon. Significant proproliferative and regenerative signaling occurred in the IL-22, STAT3, and pRb pathways, with minor effects on inflammatory parameters, which, however, increased in aging mice. Importantly, colonocyte K8 deletion induced a dramatically increased sensitivity to azoxymethane-induced tumorigenesis. In conclusion, intestinal epithelial K8 plays a significant role in colonocyte epithelial integrity maintenance, proliferation regulation and tumor suppression.


Subject(s)
Carcinogenesis/metabolism , Carcinogenesis/pathology , Colon/pathology , Epithelial Cells/metabolism , Gene Deletion , Gene Targeting , Intestines/pathology , Keratin-8/genetics , Aging/pathology , Animals , Cell Differentiation , Cell Proliferation , Diarrhea/complications , Diarrhea/pathology , Down-Regulation , Fluorodeoxyglucose F18/metabolism , Goblet Cells/metabolism , Inflammation/pathology , Integrases/metabolism , Keratin-8/deficiency , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/metabolism , Permeability , Phenotype , Positron-Emission Tomography
16.
Int J Mol Sci ; 22(15)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34360548

ABSTRACT

Keratin (K) 7 is an intermediate filament protein expressed in ducts and glands of simple epithelial organs and in urothelial tissues. In the pancreas, K7 is expressed in exocrine ducts, and apico-laterally in acinar cells. Here, we report K7 expression with K8 and K18 in the endocrine islets of Langerhans in mice. K7 filament formation in islet and MIN6 ß-cells is dependent on the presence and levels of K18. K18-knockout (K18‒/‒) mice have undetectable islet K7 and K8 proteins, while K7 and K18 are downregulated in K8‒/‒ islets. K7, akin to F-actin, is concentrated at the apical vertex of ß-cells in wild-type mice and along the lateral membrane, in addition to forming a fine cytoplasmic network. In K8‒/‒ ß-cells, apical K7 remains, but lateral keratin bundles are displaced and cytoplasmic filaments are scarce. Islet K7, rather than K8, is increased in K18 over-expressing mice and the K18-R90C mutation disrupts K7 filaments in mouse ß-cells and in MIN6 cells. Notably, islet K7 filament networks significantly increase and expand in the perinuclear regions when examined in the streptozotocin diabetes model. Hence, K7 represents a significant component of the murine islet keratin network and becomes markedly upregulated during experimental diabetes.


Subject(s)
Diabetes Mellitus, Experimental/pathology , Insulin-Secreting Cells/pathology , Keratin-18/metabolism , Keratin-7/metabolism , Keratin-8/metabolism , Animals , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Gene Expression Regulation , Insulin-Secreting Cells/metabolism , Keratin-18/genetics , Keratin-7/genetics , Keratin-8/genetics , Mice , Mice, Knockout , Up-Regulation
17.
Int J Biochem Cell Biol ; 129: 105878, 2020 12.
Article in English | MEDLINE | ID: mdl-33152513

ABSTRACT

Keratin intermediate filament proteins are major cytoskeletal components of the mammalian simple layered columnar epithelium in the gastrointestinal tract. Human colon crypt epithelial cells express keratins 18, 19 and 20 as the major type I keratins, and keratin 8 as the type II keratin. Keratin expression patterns vary between species, and mouse colonocytes express keratin 7 as a second type II keratin. Colonic keratin patterns change during cell differentiation, such that K20 increases in the more differentiated crypt cells closer to the central lumen. Keratins provide a structural and mechanical scaffold to support cellular stability, integrity and stress protection in this rapidly regenerating tissue. They participate in central colonocyte processes including barrier function, ion transport, differentiation, proliferation and inflammatory signaling. The cell-specific keratin compositions in different epithelial tissues has allowed for the utilization of keratin-based diagnostic methods. Since the keratin expression pattern in tumors often resembles that in the primary tissue, it can be used to recognize metastases of colonic origin. This review focuses on recent findings on the biological functions of mammalian colon epithelial keratins obtained from pivotal in vivo models. We also discuss the diagnostic value of keratins in chronic colonic disease and known keratin alterations in colon pathologies. This review describes the biochemical properties of keratins and their molecular actions in colonic epithelial cells and highlights diagnostic data in colorectal cancer and inflammatory bowel disease patients, which may facilitate the recognition of disease subtypes and the establishment of personal therapies in the future.


Subject(s)
Colon/metabolism , Keratins/metabolism , Animals , Colon/cytology , Colon/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Epithelium/metabolism , Homeostasis , Humans
18.
Int J Mol Sci ; 20(12)2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31226730

ABSTRACT

Estrogen-receptor-mediated signaling has been suggested to decrease the inflammatory response in monocyte macrophages. Previously, we showed that a novel selective estrogen receptor modulator (SERM2) promotes anti-inflammatory phenotype of monocytes in vitro. In this study, we demonstrate the potential of SERM2 in amelioration of colitis. We utilized a dextran sodium sulfate (DSS)-induced colitis model in FVB/n mice to demonstrate the effects of orally administered SERM2 on the clinical status of the mice and the histopathological changes in the colon, as well as proportion of Mrc-1 positive macrophages. SERM2 nuclear receptor affinities were measured by radioligand binding assays. Orally administered, this compound significantly alleviated DSS-induced colitis in male mice and induced local estrogen receptor activation in the inflamed colon, as well as promoting anti-inflammatory cytokine expression and infiltration of anti-inflammatory monocytes. We show that this novel drug candidate has an affinity to estrogen receptors α and ß and progesterone receptors, but not to glucocorticoid receptor, thus expressing unique binding properties compared to other sex steroid receptor ligands. These results indicate that novel drug candidates to alleviate inflammatory conditions of the colon could be found among sex steroid receptor activating compounds.


Subject(s)
Colitis/drug therapy , Selective Estrogen Receptor Modulators/therapeutic use , Animals , Colitis/chemically induced , Colitis/pathology , Colon/drug effects , Colon/pathology , Cytokines/analysis , Dextran Sulfate , Disease Models, Animal , Male , Mice , Monocytes/drug effects , Monocytes/pathology
19.
Adv Healthc Mater ; 6(21)2017 Nov.
Article in English | MEDLINE | ID: mdl-28892296

ABSTRACT

Approaches to increase the efficiency in developing drugs and diagnostics tools, including new drug delivery and diagnostic technologies, are needed for improved diagnosis and treatment of major diseases and health problems such as cancer, inflammatory diseases, chronic wounds, and antibiotic resistance. Development within several areas of research ranging from computational sciences, material sciences, bioengineering to biomedical sciences and bioimaging is needed to realize innovative drug development and diagnostic (DDD) approaches. Here, an overview of recent progresses within key areas that can provide customizable solutions to improve processes and the approaches taken within DDD is provided. Due to the broadness of the area, unfortunately all relevant aspects such as pharmacokinetics of bioactive molecules and delivery systems cannot be covered. Tailored approaches within (i) bioinformatics and computer-aided drug design, (ii) nanotechnology, (iii) novel materials and technologies for drug delivery and diagnostic systems, and (iv) disease models to predict safety and efficacy of medicines under development are focused on. Current developments and challenges ahead are discussed. The broad scope reflects the multidisciplinary nature of the field of DDD and aims to highlight the convergence of biological, pharmaceutical, and medical disciplines needed to meet the societal challenges of the 21st century.


Subject(s)
Models, Biological , Computational Biology , Drug Delivery Systems , Drug Design , Humans , Molecular Docking Simulation , Nanomedicine , Nanotechnology , Neoplasms/diagnosis , Proteins/chemistry , Proteins/metabolism , Quantitative Structure-Activity Relationship
20.
FASEB J ; 31(10): 4578-4587, 2017 10.
Article in English | MEDLINE | ID: mdl-28666985

ABSTRACT

Loss of the epithelial intermediate filament protein keratin 8 (K8) in murine ß cells leads to irregular insulin vesicles and decreased insulin levels. Because mitochondria are central in glucose-stimulated insulin secretion, the relationship between keratins and ß-cell mitochondrial function and morphology was investigated. ß cells in murine K8-knockout (K8-/-) islets of Langerhans have increased numbers of mitochondria, which are rounder and have diffuse cristae, as seen by electron microscopy. The mitochondrial network in primary cultured K8-/- ß cells is more fragmented compared with K8+/+ mitochondria, correlating with decreased levels of mitofusin 2 and the mitofusin 2- and keratin-binding protein trichoplein. K8-/- ß-cell mitochondria have decreased levels of total and mitochondrial cytochrome c, which correlates with a reduction in electron transport complexes I and IV. This provokes loss of mitochondrial membrane potential and reduction of ATP and insulin amount, as seen in K8-/- ß cells. Mitochondria in K8 wild-type ß cells and MIN6 insulinoma cells overexpressing K8 and 18 are more stationary compared with mitochondria in keratin-deficient cells. In conclusion, keratins, likely through trichoplein-mitofusin interactions, regulate both structural and dynamic functions of ß-cell mitochondria, which could have implications for downstream insulin secretion.-Silvander, J. S. G., Kvarnström, S. M., Kumari-Ilieva, A., Shrestha, A., Alam, C. M., Toivola, D. M. Keratins regulate ß-cell mitochondrial morphology, motility, and homeostasis.


Subject(s)
Cell Movement/physiology , Homeostasis/physiology , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Keratin-8/metabolism , Mitochondria/metabolism , Animals , Cell Shape , Cells, Cultured , Cytochromes c/metabolism , Hepatocytes/metabolism , Intermediate Filament Proteins/metabolism , Intermediate Filaments/metabolism , Keratin-8/deficiency , Mice, Knockout , Mitochondria/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...