Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Eur J Pharmacol ; 781: 36-44, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27041645

ABSTRACT

Excitation of renal sympathetic nervous activity and the resulting increased levels of renal venous norepinephrine play important roles in renal ischaemia/reperfusion injury in rats. This study examined the effects of yohimbine, a non-selective α2-adrenoceptor antagonist, on renal venous norepinephrine levels and kidney function in acute kidney injury. Acute ischaemia/reperfusion-induced kidney injury was induced in rats by clamping the left renal artery and vein for 45min, followed by reperfusion, 2 weeks after a contralateral nephrectomy. Intravenous injection of yohimbine (0.1mg/kg) 5min prior to ischaemia significantly attenuated kidney injury and decreased the renal venous norepinephrine levels, as compared with vehicle-treated rats. To investigate the involvement of α2-adrenoceptor subtypes, we pre-treated with JP-1302, a selective α2C-adrenoceptor antagonist (1mg/kg). This suppressed renal venous norepinephrine levels and tumour necrosis factor-α and monocyte chemoattractant protein-1 mRNA levels after reperfusion and improved kidney function. Pre-treatment with BRL44408, a selective α2A-adrenoceptor antagonist (1mg/kg), or imiloxan, a selective α2B-adrenoceptor antagonist (1mg/kg) had no effect on renal function or tissue injury. These results suggest that yohimbine prevented ischaemia/reperfusion-induced kidney injury by inhibiting α2C-adrenoceptors and suppressing pro-inflammatory cytokine expression.


Subject(s)
Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Cytoprotection/drug effects , Kidney/drug effects , Receptors, Adrenergic, alpha-2/metabolism , Reperfusion Injury/complications , Yohimbine/pharmacology , Acridines/pharmacology , Acute Kidney Injury/blood , Acute Kidney Injury/etiology , Adrenergic alpha-2 Receptor Antagonists/pharmacology , Animals , Chemokine CCL2/metabolism , Gene Expression Regulation/drug effects , Kidney/metabolism , Kidney/pathology , Male , Norepinephrine/metabolism , Piperazines/pharmacology , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...