Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Front Vet Sci ; 11: 1331916, 2024.
Article in English | MEDLINE | ID: mdl-38406633

ABSTRACT

Non-typhoidal Salmonellae (NTS) are common foodborne pathogens throughout the world causing acute gastroenteritis. Compared to North America and Europe, there is little information on NTS in the Caribbean. Here we investigated the prevalence and characteristics of NTS present in the local poultry of the Cayman Islands to determine the public health risk. In total, we collected 156 samples. These were made up of boot swabs of 31 broiler farms and 31 layer farms (62 samples), paper bedding from 45 imported chick boxes, and 49 pooled cecum samples from feral chickens, each sample representing 10 individual chickens. Salmonella was isolated using the ISO 6579 protocol and isolates were characterized using Whole Genome Sequencing (WGS) analysis. Eighteen Salmonella isolates were obtained and comprised six S. enterica subspecies enterica serotypes and one subspecies houtenae serotype. Serotypes were: S. Kentucky (n = 9), S. Saintpaul (n = 5), S. Javiana (n = 1), S. Senftenberg (n = 1), S. Poona (n = 1) and S. Agona (n = 1). S. Kentucky strains were all ST152 and clonally related to poultry strains from the United states. S. Saintpaul ST50 strains showed clonality to North American strains. Over half of the strains (n = 11) contained resistance genes to at least two antibiotic groups and five strains were MDR, mainly those from imported day-old chicks. The blaCMY-2 gene was found in S. Kentucky from day-old chicks. Strains from feral poultry had no acquired AMR genes. While serotypes from feral poultry have been identified in human infections, they pose minimal risk due to their low virulence.

2.
Animals (Basel) ; 11(7)2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34359175

ABSTRACT

Doxycycline (DXC) is a broad-spectrum antibacterial antimicrobial administered to horses for the treatment of bacterial infections which may also affect donkeys. Donkeys have a different metabolism than horses, leading to differences in the pharmacokinetics of drugs compared to horses. This study aimed to describe the population pharmacokinetics of DXC in donkeys. Five doses of DXC hyclate (10 mg/kg) were administered via a nasogastric tube, q12 h, to eight non-fasted, healthy, adult jennies. Serum, urine, synovial fluid and endometrium were collected for 72 h following the first administration. Doxycycline concentration was measured by competitive enzyme immunoassay. Serum concentrations versus time data were fitted simultaneously using the stochastic approximation expectation-maximization algorithm for nonlinear mixed effects. A one-compartment model with linear elimination and first-order absorption after intragastric administration, best described the available pharmacokinetic data. Final parameter estimates indicate that DXC has a high volume of distribution (108 L/kg) as well as high absorption (10.3 h-1) in donkeys. However, results suggest that oral DXC at 10 mg/kg q12 h in donkeys would not result in a therapeutic concentration in serum, urine, synovial fluid or endometrium by comparison to the minimum inhibitory concentration of common equine pathogens. Further studies are recommended to identify appropriate dosage and dosing intervals of oral DXC in donkeys.

3.
Vet Sci ; 8(7)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34357926

ABSTRACT

Dermatophilosis is a form of dermatitis caused by the bacterium Dermatophilus congolensis. The disease usually presents as localized purulent dermatitis, crusty hair masses or widespread matting of the hair. This condition is most common in domestic ruminants; but it can also affect other wild animals and humans. Antimicrobial therapy is used in many regions to treat clinical dermatophilosis with varying results. In this study, we aimed to assess the antimicrobial susceptibility of D. congolensis isolates. Fifty-two isolates were obtained from animals showing clinical signs of the disease at farms in St. Kitts. The isolates were then confirmed as D. congolensis by phenotypic tests, PCR and MALDI-TOF Mass Spectrometry. Furthermore, minimum inhibitory concentrations (MIC) of 16 antimicrobial agents were determined, using the broth microdilution method. Although most antimicrobials showed MICs in line with published values, the tetracycline results displayed a clear bimodal distribution over the tested range, with most isolates showing low MICs and 6 isolates much higher values (+/- 100-fold increase). These results indicate the presence of acquired tetracycline resistance in D. congolensis on the island of St. Kitts. Whether the current observation has implications for efficacy of treating the disease must be confirmed in further research.

4.
Int J Mol Sci ; 22(13)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34281179

ABSTRACT

Dermatophilus congolensis is a bacterial pathogen mostly of ruminant livestock in the tropics/subtropics and certain temperate climate areas. It causes dermatophilosis, a skin disease that threatens food security by lowering animal productivity and compromising animal health and welfare. Since it is a prevalent infection in ruminants, dermatophilosis warrants more research. There is limited understanding of its pathogenicity, and as such, there is no registered vaccine against D. congolensis. To better understanding the genomics of D. congolensis, the primary aim of this work was to investigate this bacterium using whole-genome sequencing and bioinformatic analysis. D. congolensis is a high GC member of the Actinobacteria and encodes approximately 2527 genes. It has an open pan-genome, contains many potential virulence factors, secondary metabolites and encodes at least 23 housekeeping genes associated with antimicrobial susceptibility mechanisms and some isolates have an acquired antimicrobial resistance gene. Our isolates contain a single CRISPR array Cas type IE with classical 8 Cas genes. Although the isolates originate from the same geographical location there is some genomic diversity among them. In conclusion, we present the first detailed genomic study on D. congolensis, including the first observation of tet(Z), a tetracycline resistance-conferring gene.


Subject(s)
Dermatophilus/drug effects , Dermatophilus/genetics , Actinobacteria/genetics , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Cattle Diseases/metabolism , Computational Biology/methods , Dermatophilus/metabolism , Genome, Bacterial , Gram-Positive Bacterial Infections/genetics , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/veterinary , Horse Diseases/microbiology , Horses , Tetracycline Resistance/genetics , Whole Genome Sequencing/methods
5.
Microbiol Resour Announc ; 10(21): e0033421, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34042483

ABSTRACT

Dermatophilus congolensis causes dermatophilosis in cattle, mainly in tropical climates. Despite the economic losses caused by this bacterium, its pathogenic factors are less well understood. We report draft genomes of D. congolensis strains isolated during a dermatophilosis outbreak in cattle in St. Kitts and Nevis. Some isolates contain tet(Z), which is responsible for resistance to tetracyclines.

6.
Trop Med Infect Dis ; 5(1)2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32178448

ABSTRACT

To achieve global elimination of human rabies from dogs by 2030, evidence-based strategies for effective dog vaccination are needed. Current guidelines recommend inclusion of dogs younger than 3 months in mass rabies vaccination campaigns, although available vaccines are only recommended for use by manufacturers in older dogs, ostensibly due to concerns over interference of maternally-acquired immunity with immune response to the vaccine. Adverse effects of vaccination in this age group of dogs have also not been adequately assessed under field conditions. In a single-site, owner-blinded, randomized, placebo-controlled trial in puppies born to mothers vaccinated within the previous 18 months in a high-mortality population of owned, free-roaming dogs in South Africa, we assessed immunogenicity and effect on survival to all causes of mortality of a single dose of rabies vaccine administered at 6 weeks of age. We found that puppies did not have appreciable levels of maternally-derived antibodies at 6 weeks of age (geometric mean titer 0.065 IU/mL, 95% CI 0.061-0.069; n = 346), and that 88% (95% CI 80.7-93.3) of puppies vaccinated at 6 weeks had titers ≥0.5 IU/mL 21 days later (n = 117). Although the average effect of vaccination on survival was not statistically significant (hazard ratio [HR] 1.35, 95% CI 0.83-2.18), this effect was modified by sex (p = 0.02), with the HR in females 3.09 (95% CI 1.24-7.69) and the HR in males 0.79 (95% CI 0.41-1.53). We speculate that this effect is related to the observed survival advantage that females had over males in the unvaccinated group (HR 0.27; 95% CI 0.11-0.70), with vaccination eroding this advantage through as-yet-unknown mechanisms.

7.
BMC Genomics ; 20(1): 15, 2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30621583

ABSTRACT

BACKGROUND: Pathogens stimulate immune functions of macrophages. Macrophages are a key sentinel cell regulating the response to pathogenic ligands and orchestrating the direction of the immune response. Our study aimed at investigating the early transcriptomic changes of bovine macrophages (Bomacs) in response to stimulation with CpG DNA or polyI:C, representing bacterial and viral ligands respectively, and performed transcriptomics by RNA sequencing (RNASeq). KEGG, GO and IPA analytical tools were used to reconstruct pathways, networks and to map out molecular and cellular functions of differentially expressed genes (DE) in stimulated cells. RESULTS: A one-way ANOVA analysis of RNASeq data revealed significant differences between the CpG DNA and polyI:C-stimulated Bomac. Of the 13,740 genes mapped to the bovine genome, 2245 had p-value ≤0.05, deemed as DE. At 6 h post stimulation of Bomac, poly(I:C) induced a very different transcriptomic profile from that induced by CpG DNA. Whereas, 347 genes were upregulated and 210 downregulated in response to CpG DNA, poly(I:C) upregulated 761 genes and downregulated 414 genes. The topmost DE genes in poly(I:C)-stimulated cells had thousand-fold changes with highly significant p-values, whereas in CpG DNA stimulated cells had 2-5-fold changes with less stringent p-values. The highest DE genes in both stimulations belonged to the TNF superfamily, TNFSF18 (CpG) and TNFSF10 (poly(I:C)) and in both cases the lowest downregulated gene was CYP1A1. CpG DNA highly induced canonical pathways that are unrelated to immune response in Bomac. CpG DNA influenced expression of genes involved in molecular and cellular functions in free radical scavenging. By contrast, poly(I:C) highly induced exclusively canonical pathways directly related to antiviral immune functions mediated by interferon signalling genes. The transcriptomic profile after poly(I:C)-stimulation was consistent with induction of TLR3 signalling. CONCLUSION: CpG DNA and poly(I:C) induce different early transcriptional landscapes in Bomac, but each is suited to a specific function of macrophages during interaction with pathogens. Poly(I:C) influenced antiviral response genes, whereas CpG DNA influenced genes important for phagocytic processes. Poly(I:C) was more potent in setting the inflammatory landscape desirable for an efficient immune response against virus infection.


Subject(s)
High-Throughput Nucleotide Sequencing , Macrophages/metabolism , Pathogen-Associated Molecular Pattern Molecules , Transcriptome/genetics , Animals , Cattle , Cell Line , CpG Islands/genetics , Cytochrome P-450 CYP1A1/genetics , Gene Expression Profiling , Genome/genetics , Ligands , Macrophages/microbiology , Macrophages/virology , Poly I-C/genetics , Tumor Necrosis Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL