Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Life Sci Alliance ; 7(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38331475

ABSTRACT

Brachydactyly type E (BDE), shortened metacarpals, metatarsals, cone-shaped epiphyses, and short stature commonly occurs as a sole phenotype. Parathyroid hormone-like protein (PTHrP) has been shown to be responsible in all forms to date, either directly or indirectly. We used linkage and then whole genome sequencing in a small pedigree, to elucidate BDE and identified a truncated disintegrin-and-metalloproteinase-19 (ADAM19) allele in all affected family members, but not in nonaffected persons. Since we had shown earlier that the extracellular domain of the parathyroid hormone receptor (PTHR1) is subject to an unidentified metalloproteinase cleavage, we tested the hypothesis that ADAM19 is a sheddase for PTHR1. WT ADAM19 cleaved PTHR1, while mutated ADAM-19 did not. We mapped the cleavage site that we verified with mass spectrometry between amino acids 64-65. ADAM-19 cleavage increased Gq and decreased Gs activation. Moreover, perturbed PTHR1 cleavage by ADAM19 increased ß-arrestin2 recruitment, while cAMP accumulation was not altered. We suggest that ADAM19 serves as a regulatory element for PTHR1 and could be responsible for BDE. This sheddase may affect other PTHrP or PTH-related functions.


Subject(s)
Brachydactyly , Parathyroid Hormone-Related Protein , Humans , Parathyroid Hormone-Related Protein/genetics , Brachydactyly/genetics , Receptor, Parathyroid Hormone, Type 1/genetics , Receptor, Parathyroid Hormone, Type 1/metabolism , Metalloproteases , ADAM Proteins
2.
Pediatr Nephrol ; 36(1): 9-17, 2021 01.
Article in English | MEDLINE | ID: mdl-31925537

ABSTRACT

Kidneys have a high energy demand to facilitate the reabsorption of the glomerular filtrate. For this reason, renal cells have a high density of mitochondria. Mitochondrial cytopathies can be the result of a mutation in both mitochondrial and nuclear DNA. Mitochondrial dysfunction can lead to a variety of renal manifestations. Examples of tubular manifestations are renal Fanconi Syndrome, which is often found in patients diagnosed with Kearns-Sayre and Pearson's marrow-pancreas syndrome, and distal tubulopathies, which result in electrolyte disturbances such as hypomagnesemia. Nephrotic syndrome can be a glomerular manifestation of mitochondrial dysfunction and is typically associated with focal segmental glomerular sclerosis on histology. Tubulointerstitial nephritis can also be seen in mitochondrial cytopathies and may lead to end-stage renal disease. The underlying mechanisms of these cytopathies remain incompletely understood; therefore, current therapies focus mainly on symptom relief. A better understanding of the molecular disease mechanisms is critical in order to improve treatments.


Subject(s)
Mutation , DNA, Mitochondrial/genetics , Humans , Kearns-Sayre Syndrome , Mitochondria/genetics , Mitochondrial Myopathies , Nephritis, Interstitial
3.
Case Rep Med ; 2020: 1607141, 2020.
Article in English | MEDLINE | ID: mdl-32849876

ABSTRACT

Infective endocarditis (IE) is more common in patients with predisposing cardiac lesions and has many potential complications, including stroke and arterial thromboembolisms. Renal manifestations have an estimated prevalence of ∼20%. Rapidly progressive glomerulonephritis (RPGN) is a nephrological emergency manifested by autoimmune-mediated progressive loss of renal function over a relatively short period of time. Here, we report the case of a 60-year-old Caucasian male, who presented with speech impairment and was found to have multiple embolic strokes caused by aortic valve IE. His renal function declined rapidly, and his urine sediment featured hematuria and proteinuria. ANCA titer was negative by immunofluorescence (IF); however, the PR3 antibody was elevated. The renal biopsy revealed pauci-immune focally necrotizing glomerulonephritis with the presence of ∼25% cellular crescents. He was initially treated with plasmapheresis and pulse dose steroids. Hemodialysis was initiated for uremic symptoms. After four weeks of antibiotic therapy and with blood cultures remaining negative, he was treated with rituximab. Two months after discharge, his renal function showed improvement, and hemodialysis was discontinued. This case highlights several complications associated with lactobacillus endocarditis including RPGN.

4.
Pediatr Res ; 85(6): 777-785, 2019 05.
Article in English | MEDLINE | ID: mdl-30795005

ABSTRACT

BACKGROUND: Protein-losing enteropathy (PLE) is a severe complication of Fontan circulation with increased risk of end-organ dysfunction. We evaluated tissue oxygenation via near-infrared spectroscopy (NIRS) at different exercise levels in Fontan patients. METHODS: Assessment of multisite NIRS during cycle ergometer exercise and daily activities in three groups: Fontan patients with PLE; without PLE; patients with dextro-transposition of the great arteries (d-TGA); comparing univentricular with biventricular circulation and Fontan with/without PLE. Renal threshold analysis (<65%;<55%;<45%) of regional oxygen saturation (rSO2) was performed. RESULTS: Fontan patients showed reduced rSO2 (p < 0.05) in their quadriceps femoris muscle compared with biventricular d-TGA patients at all time points. rSO2 in renal tissue was reduced at baseline (p = 0.002), exercise (p = 0.0062), and daily activities (p = 0.03) in Fontan patients with PLE. Renal threshold analysis identified critically low renal rSO2 (rSO2 < 65%) in Fontan patients with PLE during exercise (95% of monitoring time below threshold) and daily activities (83.7% time below threshold). CONCLUSION: Fontan circulation is associated with decreased rSO2 values in skeletal muscle and hypoxemia of renal tissue solely in patients with PLE. Reduced rSO2 already during activities of daily life, might contribute to comorbidities in patients with Fontan circulation, including PLE and renal failure.


Subject(s)
Fontan Procedure/adverse effects , Oxygen/metabolism , Protein-Losing Enteropathies/etiology , Protein-Losing Enteropathies/metabolism , Adolescent , Brain/metabolism , Child , Child, Preschool , Cohort Studies , Exercise/physiology , Humans , Hypoxia/etiology , Hypoxia/metabolism , Infant , Kidney/injuries , Kidney/metabolism , Muscle, Skeletal/metabolism , Oxygen/blood , Postoperative Complications/etiology , Postoperative Complications/metabolism , Spectroscopy, Near-Infrared , Transposition of Great Vessels/surgery , Univentricular Heart/surgery , Young Adult
5.
Proc Natl Acad Sci U S A ; 115(16): E3749-E3758, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29618612

ABSTRACT

The pathogenesis of parathyroid gland hyperplasia is poorly understood, and a better understanding is essential if there is to be improvement over the current strategies for prevention and treatment of secondary hyperparathyroidism. Here we investigate the specific role of Klotho expressed in the parathyroid glands (PTGs) in mediating parathyroid hormone (PTH) and serum calcium homeostasis, as well as the potential interaction between calcium-sensing receptor (CaSR) and Klotho. We generated mouse strains with PTG-specific deletion of Klotho and CaSR and dual deletion of both genes. We show that ablating CaSR in the PTGs increases PTH synthesis, that Klotho has a pivotal role in suppressing PTH in the absence of CaSR, and that CaSR together with Klotho regulates PTH biosynthesis and PTG growth. We utilized the tdTomato gene in our mice to visualize and collect PTGs to reveal an inhibitory function of Klotho on PTG cell proliferation. Chronic hypocalcemia and ex vivo PTG culture demonstrated an independent role for Klotho in mediating PTH secretion. Moreover, we identify an interaction between PTG-expressed CaSR and Klotho. These findings reveal essential and interrelated functions for CaSR and Klotho during parathyroid hyperplasia.


Subject(s)
Glucuronidase/physiology , Parathyroid Glands/metabolism , Parathyroid Hormone/biosynthesis , Receptors, G-Protein-Coupled/physiology , Animals , Bone and Bones/pathology , Calcium/metabolism , Calcium, Dietary/administration & dosage , Female , Fibroblast Growth Factor-23 , Glucuronidase/deficiency , Glucuronidase/genetics , Homeostasis , Hypercalcemia/genetics , Hypercalcemia/pathology , Hyperparathyroidism/genetics , Hyperparathyroidism/pathology , Hyperplasia , Hypocalcemia/metabolism , Hypophosphatemia/genetics , Hypophosphatemia/pathology , Immunoprecipitation , Kidney/pathology , Klotho Proteins , Male , Mice , Parathyroid Glands/pathology , Parathyroid Hormone/genetics , Protein Interaction Mapping , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, Calcium-Sensing , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/genetics
6.
Proc Natl Acad Sci U S A ; 114(16): E3344-E3353, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28373577

ABSTRACT

Renal Ca2+ reabsorption is essential for maintaining systemic Ca2+ homeostasis and is tightly regulated through the parathyroid hormone (PTH)/PTHrP receptor (PTH1R) signaling pathway. We investigated the role of PTH1R in the kidney by generating a mouse model with targeted deletion of PTH1R in the thick ascending limb of Henle (TAL) and in distal convoluted tubules (DCTs): Ksp-cre;Pth1rfl/fl Mutant mice exhibited hypercalciuria and had lower serum calcium and markedly increased serum PTH levels. Unexpectedly, proteins involved in transcellular Ca2+ reabsorption in DCTs were not decreased. However, claudin14 (Cldn14), an inhibitory factor of the paracellular Ca2+ transport in the TAL, was significantly increased. Analyses by flow cytometry as well as the use of Cldn14-lacZ knock-in reporter mice confirmed increased Cldn14 expression and promoter activity in the TAL of Ksp-cre;Pth1rfl/fl mice. Moreover, PTH treatment of HEK293 cells stably transfected with CLDN14-GFP, together with PTH1R, induced cytosolic translocation of CLDN14 from the tight junction. Furthermore, mice with high serum PTH levels, regardless of high or low serum calcium, demonstrated that PTH/PTH1R signaling exerts a suppressive effect on Cldn14. We therefore conclude that PTH1R signaling directly and indirectly regulates the paracellular Ca2+ transport pathway by modulating Cldn14 expression in the TAL. Finally, systemic deletion of Cldn14 completely rescued the hypercalciuric and lower serum calcium phenotype in Ksp-cre;Pth1rfl/fl mice, emphasizing the importance of PTH in inhibiting Cldn14. Consequently, suppressing CLDN14 could provide a potential treatment to correct urinary Ca2+ loss, particularly in patients with hypoparathyroidism.


Subject(s)
Calcium/metabolism , Claudins/physiology , Extremities/physiology , Gene Expression Regulation , Parathyroid Hormone/metabolism , Receptor, Parathyroid Hormone, Type 1/metabolism , Tight Junctions/physiology , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Promoter Regions, Genetic/genetics , Signal Transduction
7.
Hypertension ; 66(4): 800-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26283042

ABSTRACT

Autosomal-dominant hypertension with brachydactyly is a salt-independent Mendelian syndrome caused by activating mutations in the gene encoding phosphodiesterase 3A. These mutations increase the protein kinase A-mediated phosphorylation of phosphodiesterase 3A resulting in enhanced cAMP-hydrolytic affinity and accelerated cell proliferation. The phosphorylated vasodilator-stimulated phosphoprotein is diminished, and parathyroid hormone-related peptide is dysregulated, potentially accounting for all phenotypic features. Untreated patients die prematurely of stroke; however, hypertension-induced target-organ damage is otherwise hardly apparent. We conducted clinical studies of vascular function, cardiac functional imaging, platelet function in affected and nonaffected persons, and cell-based assays. Large-vessel and cardiac functions indeed seem to be preserved. The platelet studies showed normal platelet function. Cell-based studies demonstrated that available phosphodiesterase 3A inhibitors suppress the mutant isoforms. However, increasing cGMP to indirectly inhibit the enzyme seemed to have particular use. Our results shed more light on phosphodiesterase 3A activation and could be relevant to the treatment of severe hypertension in the general population.


Subject(s)
Brachydactyly/genetics , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , DNA/genetics , Hypertension/congenital , Mutation , Adolescent , Adult , Blood Pressure/physiology , Brachydactyly/diagnosis , Brachydactyly/enzymology , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , DNA Mutational Analysis , Echocardiography, Doppler, Pulsed , Female , Humans , Hypertension/diagnosis , Hypertension/enzymology , Hypertension/genetics , Immunoblotting , Magnetic Resonance Imaging, Cine , Male , Middle Aged , Young Adult
8.
Physiology (Bethesda) ; 30(4): 317-26, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26136545

ABSTRACT

In addition to its prominent role in the parathyroid gland, the calcium-sensing receptor (CaSR) is expressed in various tissues, including the kidney. This article reviews current data on the calcium-sensing properties of the kidney, the localization of the CaSR protein along the nephron, and its function in calcium homeostasis and in hypercalciuria.


Subject(s)
Calcium/metabolism , Kidney Tubules/metabolism , Receptors, Calcium-Sensing/metabolism , Animals , Homeostasis , Humans , Hypercalciuria/metabolism , Hypercalciuria/physiopathology , Kidney Tubules/physiopathology , Signal Transduction
9.
Nat Genet ; 47(6): 647-53, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25961942

ABSTRACT

Cardiovascular disease is the most common cause of death worldwide, and hypertension is the major risk factor. Mendelian hypertension elucidates mechanisms of blood pressure regulation. Here we report six missense mutations in PDE3A (encoding phosphodiesterase 3A) in six unrelated families with mendelian hypertension and brachydactyly type E (HTNB). The syndrome features brachydactyly type E (BDE), severe salt-independent but age-dependent hypertension, an increased fibroblast growth rate, neurovascular contact at the rostral-ventrolateral medulla, altered baroreflex blood pressure regulation and death from stroke before age 50 years when untreated. In vitro analyses of mesenchymal stem cell-derived vascular smooth muscle cells (VSMCs) and chondrocytes provided insights into molecular pathogenesis. The mutations increased protein kinase A-mediated PDE3A phosphorylation and resulted in gain of function, with increased cAMP-hydrolytic activity and enhanced cell proliferation. Levels of phosphorylated VASP were diminished, and PTHrP levels were dysregulated. We suggest that the identified PDE3A mutations cause the syndrome. VSMC-expressed PDE3A deserves scrutiny as a therapeutic target for the treatment of hypertension.


Subject(s)
Brachydactyly/genetics , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Hypertension/congenital , Adolescent , Adult , Amino Acid Sequence , Animals , Base Sequence , Case-Control Studies , Cell Differentiation , Child , Female , Genetic Association Studies , HeLa Cells , Humans , Hypertension/genetics , Kinetics , Male , Mesenchymal Stem Cells/physiology , Mice , Middle Aged , Molecular Sequence Data , Mutation, Missense , Myocytes, Smooth Muscle/physiology , Pedigree
10.
Curr Opin Nephrol Hypertens ; 23(5): 494-501, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24992569

ABSTRACT

PURPOSE OF REVIEW: The calcium-sensing receptor (CaSR) has a central role in parathyroid gland function. Genetic alterations in CaSR are well known to cause inherited forms of abnormal calcium homeostasis. This review focuses on studies investigating the role of CaSR in common disorders of abnormal calcium handling and in cardiovascular calcification. RECENT FINDINGS: Genetic population studies tested the association of common allelic CASR variants with serum and urine calcium levels, kidney stone disease, primary hyperparathyroidism and bone mineral density. The results of these association studies suggested either minor or no effects of CASR variants in these phenotypes. Decreased expression of CaSR was associated with the etiology of cardiovascular calcification in individuals with advanced chronic kidney disease. SUMMARY: Ionized calcium plays a central role in the physiology of many organ systems and disease states, but the roles of CaSR other than as illustrated by Mendelian forms of CaSR dysfunction remain unclear. The contributions of CaSR to bone mineral homeostasis, vascular calcification and other forms of cardiovascular disease need further investigation.


Subject(s)
Calcium/metabolism , Cardiovascular Diseases/metabolism , Receptors, Calcium-Sensing/metabolism , Animals , Bone Remodeling , Calcium Signaling , Cardiovascular Diseases/genetics , Cardiovascular Diseases/physiopathology , Genetic Predisposition to Disease , Homeostasis , Humans , Hypercalcemia/genetics , Hypercalcemia/metabolism , Hypercalcemia/physiopathology , Hypercalciuria/genetics , Hypercalciuria/metabolism , Hypercalciuria/physiopathology , Kidney Calculi/genetics , Kidney Calculi/metabolism , Kidney Calculi/physiopathology , Mutation , Phenotype , Receptors, Calcium-Sensing/genetics , Vascular Calcification/genetics , Vascular Calcification/metabolism , Vascular Calcification/physiopathology
11.
Curr Opin Nephrol Hypertens ; 23(4): 352-60, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24867673

ABSTRACT

PURPOSE OF REVIEW: Variations in extracellular calcium level have a large impact on kidney function. Most of the effects seen are attributed to the calcium-sensing receptor (CaSR), a widely expressed G-protein-coupled cell surface protein with an important function in bone mineral homeostasis. The purpose of this review is to recapitulate the novel functional aspects of CaSR. RECENT FINDINGS: Results from mouse models demonstrate important functions for CaSR in various tissues. In the kidney, the main role of CaSR is the regulation of calcium reabsorption in the thick ascending limb, independently of its role on parathyroid hormone secretion. CaSR modulates claudin 14, the gatekeeper of paracellular ion transport in the thick ascending limb that is associated with urinary calcium excretion. One intracellular signaling pathway by which CaSR alters tight junction permeability is the calcineurin-NFAT1c-microRNA-claudin14 axis. SUMMARY: The main function of CaSR in the kidney is the regulation of calcium excretion in the thick ascending limb, independently of parathyroid hormone. CaSR modulates paracellular cation transport by altering expression of the tight junction protein claudin 14. Still more work is needed to fully understand all functions of CaSR in the kidney. Alternative pathways of calcium 'sensing' in the kidney need to be investigated.


Subject(s)
Calcium/metabolism , Kidney/metabolism , Receptors, Calcium-Sensing/genetics , Receptors, Calcium-Sensing/metabolism , Tight Junctions/metabolism , Animals , Calcium/urine , Claudins/metabolism , Homeostasis , Humans , Hypercalcemia/congenital , Hypercalcemia/genetics , Hyperparathyroidism/genetics , Mice , Models, Animal , Permeability , Signal Transduction
12.
J Am Soc Nephrol ; 25(9): 1942-53, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24676634

ABSTRACT

FSGS is characterized by the presence of partial sclerosis of some but not all glomeruli. Studies of familial FSGS have been instrumental in identifying podocytes as critical elements in maintaining glomerular function, but underlying mutations have not been identified for all forms of this genetically heterogeneous condition. Here, exome sequencing in members of an index family with dominant FSGS revealed a nonconservative, disease-segregating variant in the PAX2 transcription factor gene. Sequencing in probands of a familial FSGS cohort revealed seven rare and private heterozygous single nucleotide substitutions (4% of individuals). Further sequencing revealed seven private missense variants (8%) in a cohort of individuals with congenital abnormalities of the kidney and urinary tract. As predicted by in silico structural modeling analyses, in vitro functional studies documented that several of the FSGS-associated PAX2 mutations perturb protein function by affecting proper binding to DNA and transactivation activity or by altering the interaction of PAX2 with repressor proteins, resulting in enhanced repressor activity. Thus, mutations in PAX2 may contribute to adult-onset FSGS in the absence of overt extrarenal manifestations. These results expand the phenotypic spectrum associated with PAX2 mutations, which have been shown to lead to congenital abnormalities of the kidney and urinary tract as part of papillorenal syndrome. Moreover, these results indicate PAX2 mutations can cause disease through haploinsufficiency and dominant negative effects, which could have implications for tailoring individualized drug therapy in the future.


Subject(s)
Glomerulosclerosis, Focal Segmental/genetics , Mutation , PAX2 Transcription Factor/genetics , Adolescent , Adult , Age of Onset , Aged , Amino Acid Sequence , Base Sequence , Cohort Studies , Computer Simulation , Conserved Sequence , DNA Mutational Analysis , Exome , Female , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Humans , Male , Middle Aged , Models, Molecular , Molecular Sequence Data , Mutation, Missense , PAX2 Transcription Factor/chemistry , PAX2 Transcription Factor/metabolism , Pedigree , Polymorphism, Single Nucleotide , Protein Conformation , Static Electricity , Urogenital Abnormalities , Vesico-Ureteral Reflux/genetics , Young Adult
13.
PLoS One ; 8(8): e71885, 2013.
Article in English | MEDLINE | ID: mdl-23991001

ABSTRACT

Our study investigated the association of rare allelic variants with extremes of 24-hour urinary calcium excretion because higher urinary calcium excretion is a dominant risk factor for calcium-based kidney stone formation. We resequenced 40 candidate genes potentially related to urinary calcium excretion in individuals from the Nurses' Health Studies I & II and the Health Professionals Follow-up Study. A total of 960 participants were selected based on availability of 24-hour urine collection data and level of urinary calcium excretion (low vs. high). We utilized DNA sample pooling, droplet-based target gene enrichment, multiplexing, and high-throughput sequencing. Approximately 64% of samples (n = 615) showed both successful target enrichment and sequencing data with >20-fold deep coverage. A total of 259 novel allelic variants were identified. None of the rare gene variants (allele frequencies <2%) were found with increased frequency in the low vs. high urinary calcium groups; most of these variants were only observed in single individuals. Unadjusted analysis of variants with allele frequencies ≥ 2% suggested an association of the Claudin14 SNP rs113831133 with lower urinary calcium excretion (6/520 versus 29/710 haplotypes, P value = 0.003). Our data, together with previous human and animal studies, suggest a possible role for Claudin14 in urinary calcium excretion. Genetic validation studies in larger sample sets will be necessary to confirm our findings for rs113831133. In the tested set of candidate genes, rare allelic variants do not appear to contribute significantly to differences in urinary calcium excretion between individuals.


Subject(s)
Calcium/urine , Genetic Predisposition to Disease/genetics , Kidney Calculi/genetics , Kidney Calculi/urine , Polymorphism, Single Nucleotide , Adult , Aged , Chi-Square Distribution , Claudins/genetics , Cohort Studies , Female , Follow-Up Studies , Gene Frequency , Humans , Male , Middle Aged , Polymerase Chain Reaction , Risk Factors , Sequence Analysis, DNA
14.
Am J Kidney Dis ; 62(6): 1160-4, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23871407

ABSTRACT

A pregnant woman presented at gestational week 28 with loss of consciousness and profound polyuria. Further characterization revealed osmotic diuresis due to massive glycosuria without hyperglycemia. Glycosuria reduced substantially postpartum, from approximately 100 to approximately 30 g/1.73 m2 per day. DNA sequencing analysis of the SLC5A2 gene encoding the renal glucose transporter SGLT2 showed a homozygous frame-shift mutation (occurring after the glutamine at amino acid 168 and leading to premature termination of the protein at amino acid 186) diagnostic of familial renal glycosuria. Pregnant women with familial renal glycosuria can be at risk of profound polyuria during pregnancy due to the associated increase in glycosuria. These findings also have implications for the use of SGLT2 inhibitors in clinical practice.


Subject(s)
Glycosuria, Renal/genetics , Polyuria/genetics , Pregnancy Complications/genetics , Adult , Diagnosis, Differential , Female , Frameshift Mutation/genetics , Glucose Intolerance/diagnosis , Glucose Intolerance/genetics , Glycosuria, Renal/diagnosis , Homozygote , Humans , Kidney Function Tests , Pregnancy , Pregnancy Complications/diagnosis , Pregnancy Trimester, Second , Sequence Analysis, DNA , Sodium-Glucose Transporter 2/genetics
15.
PLoS One ; 8(2): e56389, 2013.
Article in English | MEDLINE | ID: mdl-23418565

ABSTRACT

Encapsulating peritoneal sclerosis (EPS) is a devastating complication of peritoneal dialysis (PD), characterized by marked inflammation and severe fibrosis of the peritoneum, and associated with high morbidity and mortality. EPS can occur years after termination of PD and, in severe cases, leads to intestinal obstruction and ileus requiring surgical intervention. Despite ongoing research, the pathogenesis of EPS remains unclear. We performed a global transcriptome analysis of peritoneal tissue specimens from EPS patients, PD patients without EPS, and uremic patients without history of PD or EPS (Uremic). Unsupervised and supervised bioinformatics analysis revealed distinct transcriptional patterns that discriminated these three clinical groups. The analysis identified a signature of 219 genes expressed differentially in EPS as compared to PD and Uremic groups. Canonical pathway analysis of differentially expressed genes showed enrichment in several pathways, including antigen presentation, dendritic cell maturation, B cell development, chemokine signaling and humoral and cellular immunity (P value<0.05). Further interactive network analysis depicted effects of EPS-associated genes on networks linked to inflammation, immunological response, and cell proliferation. Gene expression changes were confirmed by qRT-PCR for a subset of the differentially expressed genes. EPS patient tissues exhibited elevated expression of genes encoding sulfatase1, thrombospondin 1, fibronectin 1 and alpha smooth muscle actin, among many others, while in EPS and PD tissues mRNAs encoding leptin and retinol-binding protein 4 were markedly down-regulated, compared to Uremic group patients. Immunolocalization of Collagen 1 alpha 1 revealed that Col1a1 protein was predominantly expressed in the submesothelial compact zone of EPS patient peritoneal samples, whereas PD patient peritoneal samples exhibited homogenous Col1a1 staining throughout the tissue samples. The results are compatible with the hypothesis that encapsulating peritoneal sclerosis is a distinct pathological process from the simple peritoneal fibrosis that accompanies all PD treatment.


Subject(s)
Gene Expression Profiling , Peritoneal Dialysis/adverse effects , Peritoneal Fibrosis/genetics , Peritoneum/metabolism , Aged , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Female , Gene Regulatory Networks/genetics , Humans , Immunohistochemistry , Kidney Diseases/therapy , Leptin/genetics , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Peritoneal Fibrosis/etiology , Peritoneal Fibrosis/metabolism , Peritoneum/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Retinol-Binding Proteins, Plasma/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics
16.
Pediatr Nephrol ; 28(3): 387-99, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22763847

ABSTRACT

Advances in genetic mapping and sequencing techniques have led to substantial progress in the study of rare monogenic (Mendelian) forms of abnormal blood pressure. Many disease-defining pathways for hypertension have been identified in the past two decades. Perturbations in renal salt handling appear to be a common mechanism underlying these rare syndromes of hypertension. Excess activation at various points in the mineralocorticoid signaling pathway and malfunctioning of the autonomic (specifically sympathetic) nervous system have both been implicated in inducing hypertension, while complementary studies examining low blood pressure phenotypes have identified novel pathways exclusively linked to renal salt wasting in either the thick ascending limb or the distal nephron. The genetic defects and the physiological and cellular pathways affected in these various disorders are reviewed here. Importantly, studies have suggested that genetic variation affecting these same genes and pathways may play an important role in explaining the variation of blood pressure levels in the general population. The investigation of rare syndromes of human blood pressure variation has important implications for improving the diagnosis and treatment of hypertension.


Subject(s)
Blood Pressure/genetics , Hypertension/genetics , Hypotension/genetics , Kidney/physiopathology , Renal Tubular Transport, Inborn Errors/genetics , Animals , Genetic Predisposition to Disease , Humans , Hypertension/diagnosis , Hypertension/metabolism , Hypertension/physiopathology , Hypertension/therapy , Hypotension/diagnosis , Hypotension/metabolism , Hypotension/physiopathology , Hypotension/therapy , Kidney/metabolism , Phenotype , Prognosis , Renal Tubular Transport, Inborn Errors/diagnosis , Renal Tubular Transport, Inborn Errors/metabolism , Renal Tubular Transport, Inborn Errors/physiopathology , Renal Tubular Transport, Inborn Errors/therapy
17.
J Am Soc Nephrol ; 23(11): 1879-90, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22997254

ABSTRACT

Rare loss-of-function mutations in the calcium-sensing receptor (Casr) gene lead to decreased urinary calcium excretion in the context of parathyroid hormone (PTH)-dependent hypercalcemia, but the role of Casr in the kidney is unknown. Using animals expressing Cre recombinase driven by the Six2 promoter, we generated mice that appeared grossly normal but had undetectable levels of Casr mRNA and protein in the kidney. Baseline serum calcium, phosphorus, magnesium, and PTH levels were similar to control mice. When challenged with dietary calcium supplementation, however, these mice had significantly lower urinary calcium excretion than controls (urinary calcium to creatinine, 0.31±0.03 versus 0.63±0.14; P=0.001). Western blot analysis on whole-kidney lysates suggested an approximately four-fold increase in activated Na(+)-K(+)-2Cl(-) cotransporter (NKCC2). In addition, experimental animals exhibited significant downregulation of Claudin14, a negative regulator of paracellular cation permeability in the thick ascending limb, and small but significant upregulation of Claudin16, a positive regulator of paracellular cation permeability. Taken together, these data suggest that renal Casr regulates calcium reabsorption in the thick ascending limb, independent of any change in PTH, by increasing the lumen-positive driving force for paracellular Ca(2+) transport.


Subject(s)
Calcium/urine , Kidney/metabolism , Receptors, Calcium-Sensing/deficiency , Animals , Base Sequence , Claudins/metabolism , Homeodomain Proteins/genetics , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Parathyroid Hormone/metabolism , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Calcium-Sensing/genetics , Sodium-Potassium-Chloride Symporters/metabolism , Solute Carrier Family 12, Member 1 , Transcription Factors/genetics
18.
Nature ; 482(7383): 98-102, 2012 Jan 22.
Article in English | MEDLINE | ID: mdl-22266938

ABSTRACT

Hypertension affects one billion people and is a principal reversible risk factor for cardiovascular disease. Pseudohypoaldosteronism type II (PHAII), a rare Mendelian syndrome featuring hypertension, hyperkalaemia and metabolic acidosis, has revealed previously unrecognized physiology orchestrating the balance between renal salt reabsorption and K(+) and H(+) excretion. Here we used exome sequencing to identify mutations in kelch-like 3 (KLHL3) or cullin 3 (CUL3) in PHAII patients from 41 unrelated families. KLHL3 mutations are either recessive or dominant, whereas CUL3 mutations are dominant and predominantly de novo. CUL3 and BTB-domain-containing kelch proteins such as KLHL3 are components of cullin-RING E3 ligase complexes that ubiquitinate substrates bound to kelch propeller domains. Dominant KLHL3 mutations are clustered in short segments within the kelch propeller and BTB domains implicated in substrate and cullin binding, respectively. Diverse CUL3 mutations all result in skipping of exon 9, producing an in-frame deletion. Because dominant KLHL3 and CUL3 mutations both phenocopy recessive loss-of-function KLHL3 mutations, they may abrogate ubiquitination of KLHL3 substrates. Disease features are reversed by thiazide diuretics, which inhibit the Na-Cl cotransporter in the distal nephron of the kidney; KLHL3 and CUL3 are expressed in this location, suggesting a mechanistic link between KLHL3 and CUL3 mutations, increased Na-Cl reabsorption, and disease pathogenesis. These findings demonstrate the utility of exome sequencing in disease gene identification despite the combined complexities of locus heterogeneity, mixed models of transmission and frequent de novo mutation, and establish a fundamental role for KLHL3 and CUL3 in blood pressure, K(+) and pH homeostasis.


Subject(s)
Carrier Proteins/genetics , Cullin Proteins/genetics , Hypertension/genetics , Mutation/genetics , Pseudohypoaldosteronism/genetics , Water-Electrolyte Imbalance/genetics , Adaptor Proteins, Signal Transducing , Amino Acid Sequence , Animals , Base Sequence , Blood Pressure/genetics , Carrier Proteins/chemistry , Cohort Studies , Cullin Proteins/chemistry , Electrolytes , Exons/genetics , Female , Gene Expression Profiling , Genes, Dominant/genetics , Genes, Recessive/genetics , Genotype , Homeostasis/genetics , Humans , Hydrogen-Ion Concentration , Hypertension/complications , Hypertension/physiopathology , Male , Mice , Microfilament Proteins , Models, Molecular , Molecular Sequence Data , Phenotype , Potassium/metabolism , Pseudohypoaldosteronism/complications , Pseudohypoaldosteronism/physiopathology , Sodium Chloride/metabolism , Water-Electrolyte Imbalance/complications , Water-Electrolyte Imbalance/physiopathology
19.
Hypertension ; 56(5): 988-94, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20837885

ABSTRACT

Affected individuals with autosomal-dominant hypertension with brachydactyly syndrome develop severe progressive hypertension and, if left untreated, develop stroke by age <50 years. In 1996 we described hypertension and brachydactyly and presented data on adults. We recently revisited this family and performed further studies, focusing particularly on the children in this family. We performed a genome-wide single-nucleotide polymorphism genotyping linkage analysis and confirmed our earlier linkage results. We accrued interesting ancillary data that we attribute to the rearrangements that we described earlier. We performed additional analysis focused on providing clinical criteria for the diagnosis in children and particularly to monitor the onset and to display the age-dependent development of hypertension and brachydactyly. We investigated 30 children; 12 were affected, whereas 18 were not. Brachydactyly with short stature presented as a maturing phenotype, becoming obvious during the prepubertal growth spurt. Stage 2 hypertension was already present in toddlers and increased with age. Thus, blood pressure measurement, rather than brachydactyly, was the most reliable phenotype for the very early diagnosis in children. Importantly, hypertension with brachydactyly occurs worldwide. Once the diagnosis is made, we recommend treatment of all individuals with stage 2 hypertension according to the current European and US guidelines on hypertension in children and adolescents.


Subject(s)
Body Height/genetics , Hypertension/genetics , Limb Deformities, Congenital/genetics , Puberty/genetics , Adolescent , Child , Child, Preschool , Female , Genetic Linkage , Genome-Wide Association Study , Genotype , Humans , Hypertension/complications , Infant , Limb Deformities, Congenital/complications , Male , Phenotype , Polymorphism, Single Nucleotide
20.
Semin Nephrol ; 30(4): 374-86, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20807610

ABSTRACT

Congenital anomalies of the kidney and urinary tract anatomy (CAKUT) are common in children and represent approximately 30% of all prenatally diagnosed malformations. CAKUT is phenotypically variable and can affect the kidney(s) alone and/or the lower urinary tract. The spectrum includes more common anomalies such as vesicoureteral reflux and, rarely, more severe malformations such as bilateral renal agenesis. In young children, congenital anomalies are the leading cause of kidney failure and for kidney transplantation or dialysis. CAKUT can also lead to significant renal problems in adulthood and may present itself with hypertension and/or proteinuria. Congenital renal anomalies can be sporadic or familial, syndromic (also affecting nonrenal or non-urinary tract tissues), or nonsyndromic. Genetic causes have been identified for the syndromic forms and have shed some light into the molecular mechanisms of kidney development in human beings. The genetic causes for the more common nonsyndromic forms of CAKUT are unknown. The role of prenatal interventions and postnatal therapies as well as the benefits of screening affected individuals and their family members are not clear.


Subject(s)
Kidney Diseases/genetics , Kidney/abnormalities , Urinary Tract/abnormalities , Humans , Kidney/diagnostic imaging , Pedigree , Syndrome , Ultrasonography, Prenatal , Urinary Tract/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...