Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
EMBO Rep ; 24(7): e56783, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37158562

ABSTRACT

Members of the polycystin family (PKD2 and PKD2L1) of transient receptor potential (TRP) channels conduct Ca2+ and depolarizing monovalent cations. Variants in PKD2 cause autosomal dominant polycystic kidney disease (ADPKD) in humans, whereas loss of PKD2L1 expression causes seizure susceptibility in mice. Understanding structural and functional regulation of these channels will provide the basis for interpreting their molecular dysregulation in disease states. However, the complete structures of polycystins are unresolved, as are the conformational changes regulating their conductive states. To provide a holistic understanding of the polycystin gating cycle, we use computational prediction tools to model missing PKD2L1 structural motifs and evaluate more than 150 mutations in an unbiased mutagenic functional screen of the entire pore module. Our results provide an energetic landscape of the polycystin pore, which enumerates gating sensitive sites and interactions required for opening, inactivation, and subsequent desensitization. These findings identify the external pore helices and specific cross-domain interactions as critical structural regulators controlling the polycystin ion channel conductive and nonconductive states.


Subject(s)
TRPP Cation Channels , Transient Receptor Potential Channels , Humans , Mice , Animals , TRPP Cation Channels/chemistry , Signal Transduction , Ion Transport , Transient Receptor Potential Channels/genetics , Mutation , Receptors, Cell Surface/metabolism , Calcium Channels/metabolism
2.
PLoS Pathog ; 19(1): e1011035, 2023 01.
Article in English | MEDLINE | ID: mdl-36719895

ABSTRACT

Streptococcus pneumoniae (the pneumococcus) is the major cause of bacterial pneumonia in the US and worldwide. Studies have shown that the differing chemical make-up between serotypes of its most important virulence factor, the capsule, can dictate disease severity. Here we demonstrate that control of capsule synthesis is also critical for infection and facilitated by two broadly conserved transcription factors, SpxR and CpsR, through a distal cis-regulatory element we name the 37-CE. Strikingly, changing only three nucleotides within this sequence is sufficient to render pneumococcus avirulent. Using in vivo and in vitro approaches, we present a model where SpxR interacts as a unique trimeric quaternary structure with the 37-CE to enable capsule repression in the airways. Considering its dramatic effect on infection, variation of the 37-CE between serotypes suggests this molecular switch could be a critical contributing factor to this pathogen's serotype-specific disease outcomes.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Humans , Streptococcus pneumoniae/metabolism , Pneumococcal Infections/microbiology , Virulence Factors/metabolism , Respiratory System/metabolism , Regulatory Sequences, Nucleic Acid , Serogroup , Bacterial Capsules/genetics , Bacterial Capsules/metabolism
3.
Elife ; 112022 10 04.
Article in English | MEDLINE | ID: mdl-36193887

ABSTRACT

Tumor-initiating cells with reprogramming plasticity or stem-progenitor cell properties (stemness) are thought to be essential for cancer development and metastatic regeneration in many cancers; however, elucidation of the underlying molecular network and pathways remains demanding. Combining machine learning and experimental investigation, here we report CD81, a tetraspanin transmembrane protein known to be enriched in extracellular vesicles (EVs), as a newly identified driver of breast cancer stemness and metastasis. Using protein structure modeling and interface prediction-guided mutagenesis, we demonstrate that membrane CD81 interacts with CD44 through their extracellular regions in promoting tumor cell cluster formation and lung metastasis of triple negative breast cancer (TNBC) in human and mouse models. In-depth global and phosphoproteomic analyses of tumor cells deficient with CD81 or CD44 unveils endocytosis-related pathway alterations, leading to further identification of a quality-keeping role of CD44 and CD81 in EV secretion as well as in EV-associated stemness-promoting function. CD81 is coexpressed along with CD44 in human circulating tumor cells (CTCs) and enriched in clustered CTCs that promote cancer stemness and metastasis, supporting the clinical significance of CD81 in association with patient outcomes. Our study highlights machine learning as a powerful tool in facilitating the molecular understanding of new molecular targets in regulating stemness and metastasis of TNBC.


Subject(s)
Extracellular Vesicles , Triple Negative Breast Neoplasms , Mice , Animals , Humans , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Tetraspanins , Extracellular Vesicles/metabolism , Machine Learning , Hyaluronan Receptors/genetics , Tetraspanin 28
4.
Structure ; 30(8): 1109-1128.e6, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35714601

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR) and their CRISPR-associated proteins (Cas) provide many prokaryotes with an adaptive immune system against invading genetic material. Type III CRISPR systems are unique in that they can degrade both RNA and DNA. In response to invading nucleic acids, they produce cyclic oligoadenylates that act as secondary messengers, activating cellular nucleases that aid in the immune response. Here, we present seven single-particle cryo-EM structures of the type III-A Staphylococcus epidermidis CRISPR effector complex. The structures reveal the intact S. epidermidis effector complex in an apo, ATP-bound, cognate target RNA-bound, and non-cognate target RNA-bound states and illustrate how the effector complex binds and presents crRNA. The complexes bound to target RNA capture the type III-A effector complex in a post-RNA cleavage state. The ATP-bound structures give details about how ATP binds to Cas10 to facilitate cyclic oligoadenylate production.


Subject(s)
CRISPR-Associated Proteins , Adenosine Triphosphate/metabolism , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , RNA/metabolism , Staphylococcus epidermidis/genetics , Staphylococcus epidermidis/metabolism
5.
Cells ; 11(1)2022 01 05.
Article in English | MEDLINE | ID: mdl-35011731

ABSTRACT

Mutations in leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease with a similar clinical presentation and progression to idiopathic Parkinson's disease, and common variation is linked to disease risk. Recapitulation of the genotype in rodent models causes abnormal dopamine release and increases the susceptibility of dopaminergic neurons to insults, making LRRK2 a valuable model for understanding the pathobiology of Parkinson's disease. It is also a promising druggable target with targeted therapies currently in development. LRRK2 mRNA and protein expression in the brain is highly variable across regions and cellular identities. A growing body of work has demonstrated that pathogenic LRRK2 mutations disrupt striatal synapses before the onset of overt neurodegeneration. Several substrates and interactors of LRRK2 have been identified to potentially mediate these pre-neurodegenerative changes in a cell-type-specific manner. This review discusses the effects of pathogenic LRRK2 mutations in striatal neurons, including cell-type-specific and pathway-specific alterations. It also highlights several LRRK2 effectors that could mediate the alterations to striatal function, including Rabs and protein kinase A. The lessons learned from improving our understanding of the pathogenic effects of LRRK2 mutations in striatal neurons will be applicable to both dissecting the cell-type specificity of LRRK2 function in the transcriptionally diverse subtypes of dopaminergic neurons and also increasing our understanding of basal ganglia development and biology. Finally, it will inform the development of therapeutics for Parkinson's disease.


Subject(s)
Corpus Striatum/enzymology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Synapses/enzymology , Amino Acid Sequence , Animals , Disease Models, Animal , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/chemistry , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Models, Biological , Mutation/genetics
6.
Nat Commun ; 13(1): 405, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35058437

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the pandemic of the coronavirus induced disease 2019 (COVID-19) with evolving variants of concern. It remains urgent to identify novel approaches against broad strains of SARS-CoV-2, which infect host cells via the entry receptor angiotensin-converting enzyme 2 (ACE2). Herein, we report an increase in circulating extracellular vesicles (EVs) that express ACE2 (evACE2) in plasma of COVID-19 patients, which levels are associated with severe pathogenesis. Importantly, evACE2 isolated from human plasma or cells neutralizes SARS-CoV-2 infection by competing with cellular ACE2. Compared to vesicle-free recombinant human ACE2 (rhACE2), evACE2 shows a 135-fold higher potency in blocking the binding of the viral spike protein RBD, and a 60- to 80-fold higher efficacy in preventing infections by both pseudotyped and authentic SARS-CoV-2. Consistently, evACE2 protects the hACE2 transgenic mice from SARS-CoV-2-induced lung injury and mortality. Furthermore, evACE2 inhibits the infection of SARS-CoV-2 variants (α, ß, and δ) with equal or higher potency than for the wildtype strain, supporting a broad-spectrum antiviral mechanism of evACE2 for therapeutic development to block the infection of existing and future coronaviruses that use the ACE2 receptor.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , COVID-19/immunology , Extracellular Vesicles/immunology , SARS-CoV-2/immunology , A549 Cells , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/blood , COVID-19/epidemiology , Chlorocebus aethiops , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , HEK293 Cells , HeLa Cells , Humans , Mice, Transgenic , Neutralization Tests/methods , Pandemics/prevention & control , Protein Binding , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Survival Analysis , Vero Cells
7.
Trends Biochem Sci ; 47(3): 187-188, 2022 03.
Article in English | MEDLINE | ID: mdl-34756665

ABSTRACT

Variations in the LRRK2 gene represent one of the strongest genetic factors for Parkinson's disease (PD). It has become clear that structural knowledge of the encoded large multidomain LRRK2 protein will cast light on its biological function. The new study from Myasnikov, Zhu, et al. provides a high-resolution structure of the full-length LRRK2.


Subject(s)
Parkinson Disease , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/chemistry , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Mutation , Parkinson Disease/genetics , Parkinson Disease/metabolism
8.
Biomacromolecules ; 22(6): 2363-2372, 2021 06 14.
Article in English | MEDLINE | ID: mdl-33979120

ABSTRACT

This paper describes the synthesis, characterization, and modeling of a series of molecules having four protein domains attached to a central core. The molecules were assembled with the "megamolecule" strategy, wherein enzymes react with their covalent inhibitors that are substituted on a linker. Three linkers were synthesized, where each had four oligo(ethylene glycol)-based arms terminated in a para-nitrophenyl phosphonate group that is a covalent inhibitor for cutinase. This enzyme is a serine hydrolase and reacts efficiently with the phosphonate to give a new ester linkage at the Ser-120 residue in the active site of the enzyme. Negative-stain transmission electron microscopy (TEM) images confirmed the architecture of the four-armed megamolecules. These cutinase tetramers were also characterized by X-ray crystallography, which confirmed the active-site serine-phosphonate linkage by electron-density maps. Molecular dynamics simulations of the tetracutinase megamolecules using three different force field setups were performed and compared with the TEM observations. Using the Amberff99SB-disp + pH7 force field, the two-dimensional projection distances of the megamolecules were found to agree with the measured dimensions from TEM. The study described here, which combines high-resolution characterization with molecular dynamics simulations, will lead to a comprehensive understanding of the molecular structures and dynamics for this new class of molecules.


Subject(s)
Organophosphonates , Catalytic Domain , Crystallography, X-Ray , Molecular Structure , Protein Domains
9.
Int J Biol Sci ; 17(5): 1203-1216, 2021.
Article in English | MEDLINE | ID: mdl-33867840

ABSTRACT

Manganese superoxide dismutase (MnSOD) acetylation (Ac) has been shown to be a key post-translational modification important in the regulation of detoxification activity in various disease models. We have previously demonstrated that MnSOD lysine-68 (K68) acetylation (K68-Ac) leads to a change in function from a superoxide-scavenging homotetramer to a peroxidase-directed monomer. Here, we found that estrogen receptor positive (ER+) breast cancer cell lines (MCF7 and T47D), selected for continuous growth in cisplatin (CDDP) and doxorubicin (DXR), exhibited an increase in MnSOD-K68-Ac. In addition, MnSOD-K68-Ac, as modeled by the expression of a validated acetylation mimic mutant gene (MnSODK68Q ), also led to therapy resistance to CDDP and DXR, altered mitochondrial structure and morphology, and aberrant cellular metabolism. MnSODK68Q expression in mouse embryo fibroblasts (MEFs) induced an in vitro transformation permissive phenotype. Computerized molecular protein dynamics analysis of both MnSOD-K68-Ac and MnSOD-K68Q exhibited a significant change in charge distribution along the α1 and α2 helices, directly adjacent to the Mn2+ binding site, implying that this decrease in surface charge destabilizes tetrameric MnSOD, leading to an enrichment of the monomer. Finally, monomeric MnSOD, as modeled by amber codon substitution to generate MnSOD-K68-Ac or MnSOD-K68Q expression in mammalian cells, appeared to incorporate Fe to maximally induce its peroxidase activity. In summary, these findings may explain the mechanism behind the observed structural and functional change of MnSOD-K68-Ac.


Subject(s)
Breast Neoplasms , Carcinogenesis , Cisplatin/pharmacology , Doxorubicin/pharmacology , Mitochondria , Sirtuins/metabolism , Superoxide Dismutase/metabolism , Acetylation , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Carcinogenesis/drug effects , Carcinogenesis/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Free Radical Scavengers/metabolism , Humans , Inactivation, Metabolic , MCF-7 Cells , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Protein Processing, Post-Translational
10.
J Struct Biol ; 199(3): 225-236, 2017 09.
Article in English | MEDLINE | ID: mdl-28827185

ABSTRACT

This paper provides an overview of the discussion and presentations from the Workshop on the Management of Large CryoEM Facilities held at the New York Structural Biology Center, New York, NY on February 6-7, 2017. A major objective of the workshop was to discuss best practices for managing cryoEM facilities. The discussions were largely focused on supporting single-particle methods for cryoEM and topics included: user access, assessing projects, workflow, sample handling, microscopy, data management and processing, and user training.


Subject(s)
Cryoelectron Microscopy , Research/organization & administration , Cryoelectron Microscopy/instrumentation , Workflow
11.
ACS Chem Neurosci ; 6(4): 666-80, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25676389

ABSTRACT

The first kinase inhibitor drug approval in 2001 initiated a remarkable decade of tyrosine kinase inhibitor drugs for oncology indications, but a void exists for serine/threonine protein kinase inhibitor drugs and central nervous system indications. Stress kinases are of special interest in neurological and neuropsychiatric disorders due to their involvement in synaptic dysfunction and complex disease susceptibility. Clinical and preclinical evidence implicates the stress related kinase p38αMAPK as a potential neurotherapeutic target, but isoform selective p38αMAPK inhibitor candidates are lacking and the mixed kinase inhibitor drugs that are promising in peripheral tissue disease indications have limitations for neurologic indications. Therefore, pursuit of the neurotherapeutic hypothesis requires kinase isoform selective inhibitors with appropriate neuropharmacology features. Synaptic dysfunction disorders offer a potential for enhanced pharmacological efficacy due to stress-induced activation of p38αMAPK in both neurons and glia, the interacting cellular components of the synaptic pathophysiological axis, to be modulated. We report a novel isoform selective p38αMAPK inhibitor, MW01-18-150SRM (=MW150), that is efficacious in suppression of hippocampal-dependent associative and spatial memory deficits in two distinct synaptic dysfunction mouse models. A synthetic scheme for biocompatible product and positive outcomes from pharmacological screens are presented. The high-resolution crystallographic structure of the p38αMAPK/MW150 complex documents active site binding, reveals a potential low energy conformation of the bound inhibitor, and suggests a structural explanation for MW150's exquisite target selectivity. As far as we are aware, MW150 is without precedent as an isoform selective p38MAPK inhibitor or as a kinase inhibitor capable of modulating in vivo stress related behavior.


Subject(s)
Brain/drug effects , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Neuroprotective Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridazines/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/physiopathology , Alzheimer Disease/psychology , Animals , Association Learning/drug effects , Cell Line , Disease Models, Animal , Disease Progression , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Humans , Male , Memory Disorders/drug therapy , Memory Disorders/physiopathology , Mice, Transgenic , Microsomes, Liver/drug effects , Microsomes, Liver/physiology , Mitogen-Activated Protein Kinase 14/metabolism , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacokinetics , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Rats, Sprague-Dawley , Spatial Memory/drug effects , Synapses/drug effects , Synapses/physiology
12.
Bioorg Med Chem Lett ; 23(22): 6172-7, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24080461

ABSTRACT

Herein we report the discovery and SAR of a novel series of SARS-CoV 3CLpro inhibitors identified through the NIH Molecular Libraries Probe Production Centers Network (MLPCN). In addition to ML188, ML300 represents the second probe declared for 3CLpro from this collaborative effort. The X-ray structure of SARS-CoV 3CLpro bound with a ML300 analog highlights a unique induced-fit reorganization of the S2-S4 binding pockets leading to the first sub-micromolar noncovalent 3CLpro inhibitors retaining a single amide bond.


Subject(s)
Acetamides/chemistry , Acetamides/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Severe Acute Respiratory Syndrome/drug therapy , Severe acute respiratory syndrome-related coronavirus/drug effects , Acetamides/chemical synthesis , Antiviral Agents/chemical synthesis , Humans , Models, Molecular , Severe Acute Respiratory Syndrome/virology , Structure-Activity Relationship
13.
PLoS One ; 8(6): e66226, 2013.
Article in English | MEDLINE | ID: mdl-23840427

ABSTRACT

Serine-threonine protein kinases are critical to CNS function, yet there is a dearth of highly selective, CNS-active kinase inhibitors for in vivo investigations. Further, prevailing assumptions raise concerns about whether single kinase inhibitors can show in vivo efficacy for CNS pathologies, and debates over viable approaches to the development of safe and efficacious kinase inhibitors are unsettled. It is critical, therefore, that these scientific challenges be addressed in order to test hypotheses about protein kinases in neuropathology progression and the potential for in vivo modulation of their catalytic activity. Identification of molecular targets whose in vivo modulation can attenuate synaptic dysfunction would provide a foundation for future disease-modifying therapeutic development as well as insight into cellular mechanisms. Clinical and preclinical studies suggest a critical link between synaptic dysfunction in neurodegenerative disorders and the activation of p38αMAPK mediated signaling cascades. Activation in both neurons and glia also offers the unusual potential to generate enhanced responses through targeting a single kinase in two distinct cell types involved in pathology progression. However, target validation has been limited by lack of highly selective inhibitors amenable to in vivo use in the CNS. Therefore, we employed high-resolution co-crystallography and pharmacoinformatics to design and develop a novel synthetic, active site targeted, CNS-active, p38αMAPK inhibitor (MW108). Selectivity was demonstrated by large-scale kinome screens, functional GPCR agonist and antagonist analyses of off-target potential, and evaluation of cellular target engagement. In vitro and in vivo assays demonstrated that MW108 ameliorates beta-amyloid induced synaptic and cognitive dysfunction. A serendipitous discovery during co-crystallographic analyses revised prevailing models about active site targeting of inhibitors, providing insights that will facilitate future kinase inhibitor design. Overall, our studies deliver highly selective in vivo probes appropriate for CNS investigations and demonstrate that modulation of p38αMAPK activity can attenuate synaptic dysfunction.


Subject(s)
Brain/enzymology , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyridazines/chemistry , Pyridazines/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Amyloid beta-Peptides/toxicity , Animals , Brain/drug effects , Brain/metabolism , Catalytic Domain , Cell Line , Drug Design , Humans , Long-Term Potentiation/drug effects , Male , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 14/chemistry , Models, Molecular , Peptide Fragments/toxicity , Protein Kinase Inhibitors/chemical synthesis , Pyridazines/chemical synthesis , Pyridines/chemical synthesis
14.
J Med Chem ; 56(2): 534-46, 2013 Jan 24.
Article in English | MEDLINE | ID: mdl-23231439

ABSTRACT

A high-throughput screen of the NIH molecular libraries sample collection and subsequent optimization of a lead dipeptide-like series of severe acute respiratory syndrome (SARS) main protease (3CLpro) inhibitors led to the identification of probe compound ML188 (16-(R), (R)-N-(4-(tert-butyl)phenyl)-N-(2-(tert-butylamino)-2-oxo-1-(pyridin-3-yl)ethyl)furan-2-carboxamide, Pubchem CID: 46897844). Unlike the majority of reported coronavirus 3CLpro inhibitors that act via covalent modification of the enzyme, 16-(R) is a noncovalent SARS-CoV 3CLpro inhibitor with moderate MW and good enzyme and antiviral inhibitory activity. A multicomponent Ugi reaction was utilized to rapidly explore structure-activity relationships within S(1'), S(1), and S(2) enzyme binding pockets. The X-ray structure of SARS-CoV 3CLpro bound with 16-(R) was instrumental in guiding subsequent rounds of chemistry optimization. 16-(R) provides an excellent starting point for the further design and refinement of 3CLpro inhibitors that act by a noncovalent mechanism of action.


Subject(s)
Acetamides/chemistry , Acetamides/pharmacology , Drug Discovery , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Severe Acute Respiratory Syndrome/virology , Severe acute respiratory syndrome-related coronavirus/enzymology , Acetamides/chemical synthesis , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Protease Inhibitors/chemical synthesis , Small Molecule Libraries , Structure-Activity Relationship
15.
Am J Hum Genet ; 91(3): 572-6, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22922033

ABSTRACT

The "vanishing bone" syndromes represent a group of rare skeletal disorders characterized by osteolysis and joint destruction, which can mimic severe rheumatoid arthritis. Winchester syndrome was one of the first recognized autosomal-recessive, multicentric forms of the disorder. It was originally described nearly 50 years ago in two sisters with a severe crippling osteolysis. Using cultured fibroblasts from the proband, we have now identified homozygous mutations in membrane type-1 metalloproteinase (MT1-MMP or MMP14). We demonstrate that the resulting hydrophobic-region signal-peptide substitution (p.Thr17Arg) decreases MT1-MMP membrane localization with consequent impairment of pro-MMP2 activation, and we propose a structure-based mechanism for this effect.


Subject(s)
Abnormalities, Multiple/genetics , Arthritis/genetics , Contracture/genetics , Corneal Opacity/genetics , Growth Disorders/genetics , Hajdu-Cheney Syndrome/genetics , Matrix Metalloproteinase 14/genetics , Osteolysis/genetics , Osteoporosis/genetics , Abnormalities, Multiple/diagnostic imaging , Amino Acid Sequence , Contracture/diagnostic imaging , Corneal Opacity/diagnostic imaging , Female , Growth Disorders/diagnostic imaging , Humans , Models, Molecular , Mutation , Osteolysis/diagnostic imaging , Osteoporosis/diagnostic imaging , Radiography
16.
Biochim Biophys Acta ; 1813(5): 1068-73, 2011 May.
Article in English | MEDLINE | ID: mdl-21126544

ABSTRACT

Death associated protein kinase (DAPK) is a calmodulin (CaM)-regulated protein kinase that is a therapeutic target for central nervous system (CNS) disorders. We report here the results of studies that test the hypothesis of McNamara et al. (2009) that conformational selection in DAPK's glycine-rich region is key for catalytic activity. The hypothesis was tested by site-directed mutagenesis of glutamine-23 (Q23) in the middle of this loop. The glycine-rich loop exhibits localized differences in structure among DAPK conformations that correlate with different stages of the catalytic cycle. Changing the Q23 to a Valine (V23), found at the corresponding position in another CaM regulated protein kinase, results in a reduced catalytic efficiency. High resolution X-ray crystal structures of various conformations of the Q23V mutant DAPK and their superimposition with the corresponding conformations from wild type catalytic domain reveal localized changes in the glycine-rich region. The effect of the mutation on DAPK catalytic activity and the finding of only localized changes in the DAPK structure provide experimental evidence implicating conformational selection in this domain with activity. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.


Subject(s)
Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/metabolism , Biocatalysis , Calcium-Calmodulin-Dependent Protein Kinases/chemistry , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Mutagenesis, Site-Directed , Adenosine Diphosphate/metabolism , Adenylyl Imidodiphosphate/metabolism , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Death-Associated Protein Kinases , Enzyme Assays , Glutamine/genetics , Kinetics , Ligands , Models, Molecular , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Mutation/genetics , Protein Structure, Secondary , Sequence Alignment , Structure-Activity Relationship , Valine/genetics
17.
Bioorg Med Chem Lett ; 18(20): 5684-8, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18796354

ABSTRACT

Design, synthesis and biological evaluation of a series of 5-chloropyridine ester-derived severe acute respiratory syndrome-coronavirus chymotrypsin-like protease inhibitors is described. Position of the carboxylate functionality is critical to potency. Inhibitor 10 with a 5-chloropyridinyl ester at position 4 of the indole ring is the most potent inhibitor with a SARS-CoV 3CLpro IC(50) value of 30 nM and an antiviral EC(50) value of 6.9 microM. Molecular docking studies have provided possible binding modes of these inhibitors.


Subject(s)
Antiviral Agents/chemical synthesis , Chemistry, Pharmaceutical/methods , Severe acute respiratory syndrome-related coronavirus/metabolism , Viral Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Catalytic Domain , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Drug Design , Esters , Humans , Inhibitory Concentration 50 , Models, Chemical , Models, Molecular , Molecular Conformation , Protein Binding
18.
J Am Acad Dermatol ; 58(2): 303-7, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18222328

ABSTRACT

Infantile systemic hyalinosis (ISH) is a rare, progressive autosomal recessive disease, which is usually fatal by the age of 2 years. Clinical onset typically occurs within the first few weeks of life. The disease is characterized by joint contractures, osteopenia, failure to thrive, gingival hypertrophy, diarrhea, protein-losing enteropathy, and frequent infections. Dermatologic manifestations include thickened skin, hyperpigmentation, perianal nodules, and facial papules. Histopathology shows hyaline deposits in the dermis and visceral organs. We describe a patient with ISH confirmed by clinical and histopathologic findings, as well as DNA sequence analysis, which revealed a novel homozygous T118K mutation in the CMG2 gene.


Subject(s)
Contracture/pathology , Joint Diseases/pathology , Muscular Diseases/pathology , Skin Diseases/pathology , Amino Acid Substitution , Contracture/genetics , Diarrhea/pathology , Fatal Outcome , Female , Humans , Infant , Joint Diseases/genetics , Membrane Proteins/genetics , Muscular Diseases/genetics , Receptors, Peptide , Skin Diseases/genetics
19.
Virus Res ; 133(1): 63-73, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17397958

ABSTRACT

Although the initial outbreaks of the deadly coronavirus that causes severe acute respiratory syndrome (SARS-CoV) were controlled by public health measures, the development of vaccines and antiviral agents for SARS-CoV is essential for improving control and treatment of future outbreaks. One potential target for SARS-CoV antiviral drug development is the 3C-like protease (3CLpro). This enzyme is an attractive target since it is essential for viral replication, and since there are now a number of high resolution X-ray structures of SARS-CoV 3CLpro available making structure-based drug-design possible. As a result, SARS-CoV 3CLpro has become the focus of numerous drug discovery efforts worldwide, but as a consequence, a variety of different 3CLpro expression constructs and kinetic assays have been independently developed making evaluation and comparison between potential inhibitors problematic. Here, we review the literature focusing on different SARS-CoV 3CLpro expression constructs and assays used to measure enzymatic activity. Moreover, we provide experimental evidence showing that the activity of 3CLpro enzymatic is significantly reduced when non-native sequences or affinity-tags are added to the N- or C-termini of the enzyme, or when the enzyme used in assays is at concentrations below the equilibrium dissociation constant of the 3CLpro dimer. We demonstrate for the first time the utility of a highly sensitive and novel Alexa488-QSY7 FRET-based peptide substrate designed for routine analysis and high-throughput screening, and show that kinetic constants determined from FRET-based assays that are uncorrected for inner-filter effects can lead to artifacts. Finally, we evaluated the effects of common assay components including DTT, NaCl, EDTA and DMSO on enzymatic activity, and we recommend standardized assay conditions and constructs for routine SARS-CoV 3CLpro assays to facilitate direct comparisons between SARS-CoV 3CLpro inhibitors under development worldwide.


Subject(s)
Cysteine Endopeptidases/analysis , Cysteine Endopeptidases/metabolism , Drug Evaluation, Preclinical , Severe acute respiratory syndrome-related coronavirus/enzymology , Amino Acid Sequence , Coronavirus 3C Proteases , Crystallization , Cysteine Endopeptidases/genetics , Enzyme Inhibitors/pharmacology , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/metabolism , Histidine/genetics , Histidine/metabolism , Humans , Kinetics , Oligopeptides/genetics , Oligopeptides/metabolism , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/antagonists & inhibitors , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Severe acute respiratory syndrome-related coronavirus/drug effects , Substrate Specificity
20.
Bioorg Med Chem Lett ; 17(21): 5876-80, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17855091

ABSTRACT

Structure-based design, synthesis, and biological evaluation of a series of peptidomimetic severe acute respiratory syndrome-coronavirus chymotrypsin-like protease inhibitors are described. These inhibitors were designed and synthesized based upon our X-ray crystal structure of inhibitor 1 bound to SARS-CoV 3CLpro. Incorporation of Boc-Ser as the P(4)-ligand resulted in enhanced SARS-CoV 3CLpro inhibitory activity. Structural analysis of the inhibitor-bound X-ray structure revealed high binding affinity toward the enzyme.


Subject(s)
Molecular Mimicry , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Viral Proteins/antagonists & inhibitors , Coronavirus 3C Proteases , Crystallography, X-Ray , Cysteine Endopeptidases , Hydrogen Bonding , Models, Molecular , Molecular Structure , Protease Inhibitors/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...