Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Plants (Basel) ; 11(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36501365

ABSTRACT

Lentil is an important legume crop for human and animal dietary needs due to its high nutritional value. The effect of genotype and growing environment was studied on seed yield (SY), crude protein (CP) and mineral nutrients (macro and micronutrients) of five lentil genotypes grown at four diverse locations for two consecutive years under organic and conventional farming. The location within each year was considered as a separate environment (E). Data were subjected to over environment two-way analysis of variance, while a genotype (G) plus genotype × environment (GGE) biplot analysis was performed. Our results indicated the E as the main source of variation (62.3-99.8%) for SY, CP and macronutrients for both farming systems, while for micronutrients it was either the E or the G × E interaction. Different environments were identified as ideal for the parameters studied: E6 (Larissa/Central Greece/2020) produced the higher CP values (organic: 32.0%, conventional: 27.5%) and showed the highest discriminating ability that was attributed to the lowest precipitation during the crucial period of pod filling. E7 (Thessaloniki/Central Macedonia/2020) and E8 (Orestiada/Thrace/2020) had fertile soils and ample soil moisture and were the most discriminating for high micronutrient content under both farming systems. Location Orestiada showed the highest SY for both organic (1.87-2.28 t ha-1) and conventional farming (1.56-2.89 t ha-1) regardless the year of cultivation and is proposed as an ideal location for lentil cultivation or for breeding for high SY. Genotypes explained a low percentage of the total variability; however, two promising genotypes were identified. Cultivar "Samos" demonstrated a wide adaptation capacity exhibiting stable and high SY under both organic and conventional farming, while the red lentil population "03-24L" showed very high level of seed CP, Fe and Mn contents regardless E or farming system. This genetic material could be further exploited as parental material aiming to develop lentil varieties that could be utilized as "functional" food or consist of a significant feed ingredient.

2.
Front Plant Sci ; 13: 934359, 2022.
Article in English | MEDLINE | ID: mdl-36212349

ABSTRACT

Natural selection favors the competitive ideotype, enabling native plants to survive in the face of intense competition. The productive ideotype is the goal of artificial selection to achieve high crop yields via the efficient use of resources in a self-competition regime. When breeding is established under inter-genotypic competition, the competitive ideotype dominates and may fictitiously become selectable. The productive ideotype becomes selectable at the nil-competition regime, where widely spaced individuals prevent plant-to-plant interference for any input. Principal reasons bring to the fore the productive ideotype that combines low competitiveness and improved plant yield efficiency. Crop spacing via the productive ideotype is mandated to alleviate the varying optimum density and ensure efficient use of resources inter-seasonally, cope with intra-field variation and optimize resource use, compensate for missing plants and promote stability, counteract unpredictable stresses and offer a buffer against environmental diversity, and adopt low-input agriculture to conserve natural resources and the environment. For breeding toward the productive ideotype, nil-competition is the due condition to overcome the confounding effects of competition, maximize phenotypic differentiation and facilitate selection from an early segregating generation, optimize heritability due to moderated environmental variance and experimental designs that sample spatial heterogeneity, apply high selection pressure focusing exclusively on the targeted genotype, and avoid the risk of bias selection or loss of desired genotypes due to proximity to empty hills. The view of a modern crop variety composed of genotype(s) belonging to the productive ideotype is a viable option to reach crop resilience serving sustainability in enormously fluctuating agroecosystems.

4.
J Biol Res (Thessalon) ; 23: 2, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26933651

ABSTRACT

BACKGROUND: Spatial heterogeneity can have serious effects on the precision of field experimentation in plant breeding. In the present study the capacity of the honeycomb design (HD) to sample huge spatial heterogeneity was appraised. For this purpose, four trials were conducted each comprising a lentil landrace being screened for response to viruses. RESULTS: Huge spatial heterogeneity was reflected by the abnormally high values for coefficient of variation (CV) of single-plant yields, ranging 123-162 %. At a given field area, increasing the number of simulated entries was followed by declined effectiveness of the method, on account of the larger circular block implying greater intra-block heterogeneity; a hyperbolic increasing pattern of the top to bottom entry mean gap (TBG) indicated that a number of more than 100 replicates (number of plants per entry) is the crucial threshold to avoid significant deterioration of the sampling degree. Nevertheless, the honeycomb model kept dealing with variation better than the randomized complete block (RCB) pattern, thanks to the circular shape and standardized type of block that ensure the less possible extra heterogeneity with expanding the area of the block. CONCLUSIONS: Owing to the even and systematic entry allocation, breeders do not need to be concerned with the extra spatial heterogeneity that might induce the extra surface needed to expand the size of the block when many entries are considered. Instead, they could improve accuracy of comparisons with increasing the number of replicates (circular blocks) despite the concomitant greater overall spatial heterogeneity.

5.
ScientificWorldJournal ; 2014: 957472, 2014.
Article in English | MEDLINE | ID: mdl-24955427

ABSTRACT

The negative relationship between the yield potential of a genotype and its competitive ability may constitute an obstacle to recognize outstanding genotypes within heterogeneous populations. This issue was investigated by growing six heterogeneous wheat landraces along with a pure-line commercial cultivar under both dense and widely spaced conditions. The performance of two landraces showed a perfect match to the above relationship. Although they lagged behind the cultivar by 64 and 38% at the dense stand, the reverse was true with spaced plants where they succeeded in out-yielding the cultivar by 58 and 73%, respectively. It was concluded that dense stand might undervalue a landrace as potential gene pool in order to apply single-plant selection targeting pure-line cultivars, attributable to inability of plants representing high yielding genotypes to exhibit their capacity due to competitive disadvantage. On the other side, the yield expression of individuals is optimized when density is low enough to preclude interplant competition. Therefore, the latter condition appears ideal to identify the most promising landrace for breeding and subsequently recognize the individuals representing the most outstanding genotypes.


Subject(s)
Triticum/genetics , Genetic Variation/genetics , Genotype , Triticum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...