Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 2(9): 5992-6002, 2017 Sep 30.
Article in English | MEDLINE | ID: mdl-28983527

ABSTRACT

Gout is a disease with elusive treatment options. Reduction of the size of l-alanine crystals as a model crystal for gouty tophi with the use of a monomode solid-state microwave was examined as a possible therapeutic aid. The effect of microwave heating on l-alanine crystals in the presence of gold nanoparticles (Au NPs) in solution and synovial fluid (SF) in a plastic pouch through a synthetic skin patch was investigated. In this regard, three experimental paradigms were employed: Paradigm 1 includes the effect of variable microwave power (5-10 W) and variable heating time (5-60 s) and Au NPs in water (20 nm size, volume of 10 µL) in a plastic pouch (1 × 2 cm2 in size). Paradigm 2 includes the effect of a variable volume of 20 nm Au NPs in a variable volume of SF up to 100 µL in a plastic pouch at a constant microwave power (10 W) for 30 s. Paradigm 3 includes the effect of constant microwave power (10 W) and microwave heating time (30 s), constant volume of Au NPs (100 µL), and variable size of Au NPs (20-200 nm) placed in a plastic pouch through a synthetic skin patch. In these experiments, an average of 60-100% reduction in the size of an l-alanine crystal (initial size = 450 µm) without damage to the synthetic skin or increasing the temperature of the samples beyond the physiological range was reported.

2.
Article in English | MEDLINE | ID: mdl-33834175

ABSTRACT

Gout is a painful and prevalent crystal deposition disease caused by the overproduction of Uric Acid (UA) in the body and the atypical deposition in human synovial joints as Monosodium Urate Monohydrate (MSUM). Conventional treatments, such as NSAIDs, cyclooxygenase-2 inhibitors, and systemic glucocorticoids often present harmful side-effects and are short-lived. Long-term therapies including xanthine oxidase inhibitors and the use of uricosuric agents have been developed and aim to lower the UA serum levels in the body. As regards to post-crystals deposition, our research laboratory recently proposed and demonstrated the use of the Metal-Assisted and Microwave-Accelerated Decrystallization (MAMAD) technique for the breakdown of organic and biological crystals on planar surfaces. The MAMAD technique is based on the combined use of microwave heating and Au NPs in solution. The interactions of the Au NPs with microwave's electromagnetic field result in an increase in the kinetic energy of Au NPs, and subsequently, an increase in the collisions with target crystals placed on planar surfaces leading to rapid crystal breakdown. In this regard, our laboratory aims to develop the MAMAD technique as an alternative treatment for crystal deposition diseases, particularly gout, with minimal invasion and side-effects as compared to current treatments. In this review article, we will summarize our previous findings and provide additional data detailing the effectiveness of the MAMAD technique as a rapid and efficient method for the breakdown of gout related crystals and L-alanine crystals (a model crystal).

3.
ACS Omega ; 1(5): 744-754, 2016 Nov 30.
Article in English | MEDLINE | ID: mdl-27917407

ABSTRACT

Physical stability of synthetic skin samples during their exposure to microwave heating was investigated to demonstrate the use of the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique for potential biomedical applications. In this regard, optical microscopy and temperature measurements were employed for the qualitative and quantitative assessment of damage to synthetic skin samples during 20 s intermittent microwave heating using a monomode microwave source (at 8 GHz, 2-20 W) up to 120 s. The extent of damage to synthetic skin samples, assessed by the change in the surface area of skin samples, was negligible for microwave power of ≤7 W and more extensive damage (>50%) to skin samples occurred when exposed to >7 W at initial temperature range of 20-39 °C. The initial temperature of synthetic skin samples significantly affected the extent of change in temperature of synthetic skin samples during their exposure to microwave heating. The proof of principle use of the MAMAD technique was demonstrated for the decrystallization of a model biological crystal (l-alanine) placed under synthetic skin samples in the presence of gold nanoparticles. Our results showed that the size (initial size ∼850 µm) of l-alanine crystals can be reduced up to 60% in 120 s without damage to synthetic skin samples using the MAMAD technique. Finite-difference time-domain-based simulations of the electric field distribution of an 8 GHz monomode microwave radiation showed that synthetic skin samples are predicted to absorb ∼92.2% of the microwave radiation.

4.
Molecules ; 21(10)2016 Oct 18.
Article in English | MEDLINE | ID: mdl-27763557

ABSTRACT

Gout is caused by the overproduction of uric acid and the inefficient metabolism of dietary purines in humans. Current treatments of gout, which include anti-inflammatory drugs, cyclooxygenase-2 inhibitors, and systemic glucocorticoids, have harmful side-effects. Our research laboratory has recently introduced an innovative approach for the decrystallization of biological and chemical crystals using the Metal-Assisted and Microwave-Accelerated Evaporative Decrystallization (MAMAD) technique. In the MAMAD technique, microwave energy is used to heat and activate gold nanoparticles that behave as "nano-bullets" to rapidly disrupt the crystal structure of biological crystals placed on planar surfaces. In this study, crystals of various sizes and compositions were studied as models for tophaceous gout at different stages (i.e., uric acid as small crystals (~10-100 µm) and l-alanine as medium (~300 µm) and large crystals (~4400 µm). Our results showed that the use of the MAMAD technique resulted in the reduction of the size and number of uric acid and l-alanine crystals up to >40% when exposed to intermittent microwave heating (up to 20 W power at 8 GHz) in the presence of 20 nm gold nanoparticles up to 120 s. This study demonstrates that the MAMAD technique can be potentially used as an alternative therapeutic method for the treatment of gout by effective decrystallization of large crystals, similar in size to those that often occur in gout.


Subject(s)
Alanine/chemistry , Gold/pharmacology , Technology, Pharmaceutical/methods , Uric Acid/chemistry , Chemistry, Pharmaceutical/methods , Crystallization , Gold/chemistry , Gout/drug therapy , Gout/metabolism , Humans , Metal Nanoparticles/chemistry , Microwaves , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...