Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 104(1-1): 014404, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34412286

ABSTRACT

Protein design is the inverse approach of the three-dimensional (3D) structure prediction for elucidating the relationship between the 3D structures and amino acid sequences. In general, the computation of the protein design involves a double loop: A loop for amino acid sequence changes and a loop for an exhaustive conformational search for each amino acid sequence. Herein, we propose a novel statistical mechanical design method using Bayesian learning, which can design lattice proteins without the exhaustive conformational search. We consider a thermodynamic hypothesis of the evolution of proteins and apply it to the prior distribution of amino acid sequences. Furthermore, we take the water effect into account in view of the grand canonical picture. As a result, on applying the 2D lattice hydrophobic-polar (HP) model, our design method successfully finds an amino acid sequence for which the target conformation has a unique ground state. However, the performance was not as good for the 3D lattice HP models compared to the 2D models. The performance of the 3D model improves on using a 20-letter lattice proteins. Furthermore, we find a strong linearity between the chemical potential of water and the number of surface residues, thereby revealing the relationship between protein structure and the effect of water molecules. The advantage of our method is that it greatly reduces computation time, because it does not require long calculations for the partition function corresponding to an exhaustive conformational search. As our method uses a general form of Bayesian learning and statistical mechanics and is not limited to lattice proteins, the results presented here elucidate some heuristics used successfully in previous protein design methods.

2.
Phys Rev E ; 94(2-1): 022312, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27627322

ABSTRACT

We investigate the replicator dynamics with "sparse" symmetric interactions which represent specialist-specialist interactions in ecological communities. By considering a large self-interaction u, we conduct a perturbative expansion which manifests that the nature of the interactions has a direct impact on the species abundance distribution. The central results are all species coexistence in a realistic range of the model parameters and that a certain discrete nature of the interactions induces multiple peaks in the species abundance distribution, providing the possibility of theoretically explaining multiple peaks observed in various field studies. To get more quantitative information, we also construct a non-perturbative theory which becomes exact on tree-like networks if all the species coexist, providing exact critical values of u below which extinct species emerge. Numerical simulations in various different situations are conducted and they clarify the robustness of the presented mechanism of all species coexistence and multiple peaks in the species abundance distributions.

3.
Sci Rep ; 5: 7939, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25631294

ABSTRACT

When two ecosystems with separate evolutionary histories come into contact (eco-fusion), reciprocal invasions occur during their fusion. Asymmetries in the migration direction or extinction rate then occur (e.g., during the Great American Biotic Interchange, GABI). Hypotheses have been proposed to describe this process, but the ecosystem properties have not been adequately discussed. To identify the ecosystem properties that create vulnerability to species loss during eco-fusion, we conducted computer simulations of the fusion of ecosystems with independent evolutionary histories. With asymmetrical species extinction rates, the ecosystem with a higher extinction rate had a shorter food chain, a higher ratio of animal species to plant species, and a lower ratio of carnivores to herbivores. Most ecosystems that have undergone isolated evolution are vulnerable. These results may explain the vulnerability of South America's ecosystem during the GABI and that of modern Australia.


Subject(s)
Biological Evolution , Ecosystem , Biodiversity , Biomass , Food Chain , Species Specificity , Time Factors
4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(3 Pt 1): 031924, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18851082

ABSTRACT

We present a nonequilibrium statistical mechanics description of rank abundance relations (RAR) in random community models of ecology. Specifically, we study a multispecies replicator system with quenched random interaction matrices. We here consider symmetric interactions as well as asymmetric and antisymmetric cases. RARs are obtained analytically via a generating functional analysis, describing fixed-point states of the system in terms of a small set of order parameters, and in dependence on the symmetry or otherwise of interactions and on the productivity of the community. Our work is an extension of Tokita [Phys. Rev. Lett. 93, 178102 (2004)], where the case of symmetric interactions was considered within an equilibrium setup. The species abundance distribution in our model come out as truncated normal distributions or transformations thereof and, in some case, are similar to left-skewed distributions observed in ecology. We also discuss the interaction structure of the resulting food-web of stable species at stationarity, cases of heterogeneous cooperation pressures as well as effects of finite system size and of higher-order interactions.


Subject(s)
Biological Evolution , Biophysics/methods , Animals , Ecology , Ecosystem , Food Chain , Markov Chains , Models, Biological , Models, Statistical , Normal Distribution , Species Specificity
5.
Phys Rev Lett ; 93(17): 178102, 2004 Oct 22.
Article in English | MEDLINE | ID: mdl-15525129

ABSTRACT

An analytic theory of species abundance patterns (SAPs) in biological networks is presented. The theory is based on multispecies replicator dynamics equivalent to the Lotka-Volterra equation, with diverse interspecies interactions. Various SAPs observed in nature are derived from a single parameter. The abundance distribution is formed like a widely observed left-skewed lognormal distribution. As the model has a general form, the result can be applied to similar patterns in other complex biological networks, e.g., gene expression.


Subject(s)
Biological Evolution , Ecosystem , Models, Biological , Animals , Competitive Behavior , Population Dynamics
6.
Theor Popul Biol ; 63(2): 131-46, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12615496

ABSTRACT

We propose a minimal model of the dynamics of diversity-replicator equations with extinction, invasion and mutation. We numerically study the behavior of this simple model and show that it displays completely different behavior from the conventional replicator equation and the generalized Lotka-Volterra equation. We reach several significant conclusions as follows: (1) a complex ecosystem can emerge when mutants with respect to species-specific interaction are introduced; (2) such an ecosystem possesses strong resistance to invasion; (3) a typical fixation process of mutants is realized through the rapid growth of a group of mutualistic mutants with higher fitness than majority species; (4) a hierarchical taxonomic structure (like family-genus-species) emerges; and (5) the relative abundance of species exhibits a typical pattern widely observed in nature. Several implications of these results are discussed in connection with the relationship of the present model to the generalized Lotka-Volterra equation.


Subject(s)
Ecosystem , Genetic Variation , Models, Biological , Mutation , Japan , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...