Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 69(4): 579-93, 2005 Feb 15.
Article in English | MEDLINE | ID: mdl-15670577

ABSTRACT

The bombesin (Bn) receptor family includes the gastrin-releasing peptide (GRPR) and neuromedin B (NMBR) receptors, Bn receptor subtype 3 (BRS-3) and Bn receptor subtype 4 (BB(4)). They share 50% homology, yet their affinities for gastrin-releasing peptide (GRP) differ. The determinants of GRP high affinity for GRPR and BB(4), and low affinity for BRS-3 are largely unknown. To address this question we made an analysis of structural homologies in Bn receptor members correlated with their affinities for GRP to develop criteria to identify amino acids important for GRP selectivity. Fourteen differences were identified and each was mutated singly in GRPR to that found in hBRS-3. Eleven mutants had a loss of GRP affinity. Furthermore, three of four amino acids in the GRPR selected used a similar approach and previously reported to be important for high affinity Bn binding, were important for GRP affinity. Some GRPR mutants containing combinations of these mutations had greater decreases in GRP affinity than any single mutation. Particularly important for GRP selectivity were K101, Q121, A198, P199, S293, R288, T297 in GRPR. These results were confirmed by making the reverse mutations in BRS-3 to make GRP gain of affinity mutants. Modeling studies demonstrated a number of the important amino acids had side-chains oriented inward and within 6A of the binding pocket. These results demonstrated this approach could identify amino acids needed for GRP affinity and complemented results from chimera/mutagenesis studies by identifying which differences in the extracellular domains of Bn receptors were important for GRP affinity.


Subject(s)
Gastrin-Releasing Peptide/metabolism , Receptors, Bombesin/chemistry , Amino Acid Sequence , Animals , BALB 3T3 Cells , Binding Sites , Mice , Models, Molecular , Molecular Sequence Data , Receptors, Bombesin/metabolism , Structure-Activity Relationship
2.
J Pharmacol Exp Ther ; 307(2): 597-607, 2003 Nov.
Article in English | MEDLINE | ID: mdl-12970386

ABSTRACT

Little is known about the function of the central portion of the second intracellular loop (i2 loop) of peptide receptors in activation of downstream pathways and receptor modulatory processes such as receptor internalization or chronic down-regulation (DR). Recent data suggest a role for i2 loop hydrophobic amino acids in these processes. We used site-directed mutagenesis to address these issues with the gastrin-releasing peptide receptor (GRP-R). Each i2 loop residue from 142 to 148 was mutated and the receptors were expressed in Balb 3T3 cells. Two mutants showed a minimal (<2-fold) decrease in affinity. Five mutants showed decreased efficacy for activating phospholipase C (PLC). Two double mutants (IM143.147AA and VM144.147AA) showed a minimal decrease in affinity but had a decreased ability to fully activate PLC. Only the IM double mutation had decreased maximal internalization, whereas the R145A single mutant showed an increase, suggesting a tonic inhibitory role for Arg-145 in internalization. Three single and both double mutants showed decreases in receptor DR. There was a weak correlation between the extent of GRP-R internalization and the maximal PLC activation, whereas changes in the maximal PLC activation were significantly (p = 0.008) coupled to receptor DR. This study shows that amino acids of the i2 loop of the GRP-R are important in activation of PLC, internalization and down-regulation, but not for affinity. Our results support the proposal that internalization and chronic down-regulation have differing dependence on PLC and are largely independent processes, because some mutants showed no changes in internalization, but significant alterations in down-regulation.


Subject(s)
Receptors, Bombesin/metabolism , Type C Phospholipases/metabolism , Amino Acid Sequence , Amino Acids , Animals , BALB 3T3 Cells , Cell Membrane/metabolism , Down-Regulation , Enzyme Activation , Gastrin-Releasing Peptide/metabolism , Humans , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Protein Structure, Tertiary , Receptors, Bombesin/chemistry , Receptors, Bombesin/genetics , Sequence Homology, Amino Acid , Transfection
3.
Mol Pharmacol ; 61(6): 1435-43, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12021405

ABSTRACT

The mammalian bombesin peptides [gastrin-releasing peptide (GRP) and neuromedin B (NMB)] are important in numerous biological and pathological processes. These effects are mediated by the heptahelical GRP receptor (GRPR) and NMB receptor (NMBR). GRP has high affinity for GRPR and lower affinity for NMBR. Almost nothing is known about the molecular basis for the selectivity of GRP. To address this question, we first studied four loss-of-affinity GRPR chimeric receptors formed by exchanging the four extracellular (EC) domains of GRPR with the corresponding NMBR EC domains. Receptors were transiently expressed, and affinities were determined by binding studies. Only substitution of the third EC domain (EC3) of GRPR markedly decreased GRP affinity. In the reverse study using gain-of-affinity NMBR chimeras, only replacement of EC3 of NMBR markedly increased GRP affinity. Replacing each of the 20 comparable EC3 amino acids that differed in the NMBR in GRPR showed that two separate NMBR substitutions in the GRPR, Ile for Phe(185) or Ile for Ala(198), markedly decreased GRP affinity. Additional point mutants demonstrated that an amino acid with an aromatic ring in position 185 of GRPR and the size of the backbone substitution in position 198 of GRPR were important for GRP selectivity. These results demonstrate that selectivity of GRP for GRPR over NMBR is primarily determined by two amino acid differences in the EC3 domains of the receptor. Our results suggest that an interaction between the aromatic ring of Phe(185) of the GRPR with GRP is the most important for GRP selectivity.


Subject(s)
Gastrin-Releasing Peptide/metabolism , Receptors, Bombesin/metabolism , 3T3 Cells , Alanine/genetics , Alanine/metabolism , Amino Acid Sequence , Animals , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Phenylalanine/genetics , Phenylalanine/metabolism , Point Mutation , Protein Structure, Tertiary , Radioligand Assay , Receptors, Bombesin/genetics , Recombinant Fusion Proteins/metabolism , Sequence Homology, Amino Acid , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...