Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Pharm Bull (Tokyo) ; 72(3): 253-257, 2024.
Article in English | MEDLINE | ID: mdl-38432906

ABSTRACT

This study focused on the electrochemical properties of tetrazolium salts to develop a simple method for evaluating viable bacterial counts, which are indicators of drug susceptibility. Considering that the oxidized form of tetrazolium, which has excellent cell membrane permeability, changes to the insoluble reduced form formazan inside the cell, the number of viable cells was estimated based on the reduction current of the tetrazolium remaining in the bacterial suspension. Dissolved oxygen is an important component of bacterial activity. However, it interferes with the electrochemical response of tetrazolium. We estimated the number of viable bacteria in the suspension based on potential-selective current responses that were not affected by dissolved oxygen. Based on solubility, cell membrane permeability, and characteristic electrochemical properties of the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium, we developed a method for rapidly measuring viable bacteria within one-fifth of the time required by conventional colorimetric methods for drug susceptibility testing.


Subject(s)
Anti-Bacterial Agents , Mycobacterium tuberculosis , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Penicillin G , Oxygen , Tetrazolium Salts
2.
Anal Chem ; 95(33): 12358-12364, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37605797

ABSTRACT

This study focused on the electrochemical properties of tetrazolium salts to develop a simple method for evaluating viable bacterial counts, which are indicators of hygiene control at food and pharmaceutical manufacturing sites. Given that the oxidized form of 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), which has excellent cell membrane permeability, changes to the insoluble reduced form of formazan inside the cell, the number of viable cells was estimated by focusing on the reduction current of MTT remaining in the suspension. Dissolved oxygen is an important substance for bacterial activity; however, it interferes with the electrochemical response of MTT. We investigated the electrochemical properties of MTT to obtain a potential-selective current response that was not affected by dissolved oxygen. Real-time observation of viable bacteria in suspension revealed that uptake of MTT into bacteria was completed within 10 min, including the lag period. In addition, we observed that the current response depends on viable cell density regardless of the bacterial species present. Our method enables a rapid estimation of the number of viable bacteria, making it possible to confirm the safety of food products before they are shipped from the factory and thereby prevent food poisoning.


Subject(s)
Bacteria , Bromides , Tetrazolium Salts , Biological Transport , Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL
...