Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 47(14): 2610-8, 2008 May 10.
Article in English | MEDLINE | ID: mdl-18470256

ABSTRACT

The multiaperture scintillation sensor (MASS) has become a device widely employed to measure the altitude distribution of atmospheric turbulence. An empirical study is reported that investigates the dependence of the MASS results on the knowledge of the instrumental parameters. Also, the results of a side-by-side comparison of two MASS instruments are presented, indicating that MASS instruments permit measurements of the integrated seeing to a precision better than 0.05 arc sec and of the individual turbulence layer strength C(n)(2)(h)dh to better than 10(-14) m(1/3).

2.
J Opt Soc Am A Opt Image Sci Vis ; 17(10): 1819-27, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11028530

ABSTRACT

Turbulence correction in a large field of view by use of an adaptive optics imaging system with several deformable mirrors (DM's) conjugated to various heights is considered. The residual phase variance is computed for an optimized linear algorithm in which a correction of each turbulent layer is achieved by applying a combination of suitably smoothed and scaled input phase screens to all DM's. Finite turbulence outer scale and finite spatial resolution of the DM's are taken into account. A general expression for the isoplanatic angle thetaM of a system with M mirrors is derived in the limiting case of infinitely large apertures and Kolmogorov turbulence. Like Fried's isoplanatic angle theta0,thetaM is a function only of the turbulence vertical profile, is scalable with wavelength, and is independent of the telescope diameter. Use of angle thetaM permits the gain in the field of view due to the increased number of DM's to be quantified and their optimal conjugate heights to be found. Calculations with real turbulence profiles show that with three DM's a gain of 7-10x is possible, giving the typical and best isoplanatic field-of-view radii of 16 and 30 arcseconds, respectively, at lambda = 0.5 microm. It is shown that in the actual systems the isoplanatic field will be somewhat larger than thetaM owing to the combined effects of finite aperture diameter, finite outer scale, and optimized wave-front spatial filtering. However, this additional gain is not dramatic; it is less than 1.5x for large-aperture telescopes.

3.
Appl Opt ; 39(30): 5415-25, 2000 Oct 20.
Article in English | MEDLINE | ID: mdl-18354538

ABSTRACT

An instrument named the grating scale monitor for measuring the outer scale L0 from the angle-of-arrival (AA) fluctuations of a perturbed wave front was developed a few years ago at Nice University. The AA is detected with a 5-ms time resolution by modulation of the stellar image in a small telescope with a grating. One uses the normalized covariance of AA fluctuations to estimate L0. A new version of this instrument, the generalized seeing monitor (GSM) is described. It consists of four identical modules for measuring the AA at four locations on the wave front. A spatiotemporal analysis of these data leads to the determination of seeing epsilon0, outer scale L0, and the wave-front speed. In addition, isoplanatic angle theta0 is determined from scintillation, making the characterization of turbulence with the GSM almost complete. We describe the instrument and make a detailed analysis of its performance and accuracy. Several site-testing campaigns have been conducted with the GSM: at La Silla (Chile), Oukaïmeden (Morocco), Maidanak (Uzbekistan), and Cerro Pachon and Cerro Paranal (Chile). The main results of these campaigns are presented and discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...