Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Asian J ; : e202400127, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715432

ABSTRACT

Palladium morphologies are prominently used in Hydrogen gas sensing applications owing to their unique characteristics and properties. In this review article, Palladium nanoparticles, thin films, and alloys were designated as the scope of Palladium morphologies. The aim of this review article is to explore Hydrogen sensing using Palladium, focusing on the recent advancements in the field.. The principles underlying Hydrogen sensing mechanisms with Palladium are discussed initially, highlighting the unique properties of Palladium that make it a promising material for this purpose. Special attention is given to the surface interactions and structural modifications that influence the sensitivity and selectivity of Palladium-based sensors The study also addresses key challenges and recent innovations in the field which contribute to the enhancement of Palladium-based Hydrogen sensing capabilities. The current state of research is critically examined to identify gaps in knowledge and future research directions are highlighted. The prospects and challenges associated with the use of Palladium for Hydrogen sensing, emphasizing its pivotal role in advancing sensor technologies for Hydrogen detection are also discussed.

2.
Chem Rec ; 24(1): e202300295, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37772671

ABSTRACT

The research in energy storage and conversion is playing a critical role in energy policy as the innovation and technological progress are essential for achieving the energy transition and climate neutrality goals. Hydrogen Fuel Cell technology is considered a strategic element in the pursuit of sustainable and clean energy solutions. This technology is increasingly gaining attention in recent years as a potential substitute to conventional non-renewable energy sources. Fuel cell technology can be employed for domestic/commercial use along with powering the transportation sector which currently employs the use of conventional battery systems. However, these systems pose severe limitations with respect to longer charging times and limited distance range. This review article aims at providing a comprehensive methodical overview of hydrogen-based fuel cell technology along with key concepts, present day scenarios, including overview of the market and industry trends, government policies and initiatives, along with major stakeholders involved in scaling up the technology for mass consumption. The outlook of fuel cells, including their capability to revolutionise the energy sector is discussed. The technological advancements and breakthroughs on the horizon along with the challenges and safety concerns related to the widespread acceptance of fuel cells are analysed.

3.
Chem Rec ; 22(11): e202200186, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35959940

ABSTRACT

Plastics have been an indispensable material of choice in automobiles with wide range of applications such as interior, exterior, under the hood, and lighting/wiring applications. The prime motive of inclusion of these materials is increase in fuel efficiency and reduction in carbon footprint by replacing the energy intensive metallic counterparts. The current decade i. e., the 2020s has seen a recent surge in the sales of electronic vehicles. Although these numbers are promising, the growth in the rest of the parts of the world is not encouraging. It is primarily due to the skepticism involving battery life and efficiency, profitability, and environmental footprint when compared to conventional and hybrid vehicles. Also, a more concerted effort is needed in the lagging areas in order to install the required infrastructure. The emergence of plastics in the development and acceptance of e-vehicles is going to be pivotal especially when the efficiency and profitability are considered as they give the required freedom to the engineers for the design and development of various parts and sizes by replacing the bulkier and more dense materials. Also, the research on bionanocomposites has received great interest from the research community due to their versatility in application along with their eco-friendly nature throughout the lifecycle starting from feedstock up to end-of-life treatment. This review paper will be one of its kind to present a critical review of the recent developments of polymers suitable for use in e-vehicles. Also, a comprehensive discussion comprising of newer research areas for polymers in their use for e-vehicles will be presented.


Subject(s)
Automobiles , Polymers , Electricity , Electric Power Supplies , Plastics
4.
Chem Rec ; 22(7): e202100326, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35253984

ABSTRACT

Plastics around the globe have been a matter of grave concern due to the unavoidable habits of human mankind. Taking waste statistics in India for the year 2019-20 into account, the data of 60 major cities show that the generation of plastic waste stands tall at around 26,000 tonnes/day, of which only about 60 % is recycled. A majority of the non-recycled plastic waste is petrochemical-based packaging materials that are non-biodegradable in nature. Vegetative/food waste is another global issue, evidenced by vastly populated countries such as China and India accounting for 91 and 69 tonnes of food wastage, respectively in 2019. The mitigation of plastic packaging issues has led to key scientific developments, one of which is biodegradable materials. However, there is a way that these two waste-related issues can be fronted as the analogy of "taking two shots with the same arrow". The presence of various bio-compounds such as proteins, cellulose, starch, lipids, and waxes, etc., in food and vegetative waste, creates an opportunity for the development of biodegradable packaging films. Although these flexible packaging films have limitations in terms of mechanical, permeation, and moisture absorption characteristics, they can be fine-tuned in order to convert the biobased raw material into a realizable packaging product. These strategies could work in replacing petrochemical-based non-biodegradable packaging plastics which are used in enormous quantities for various household and commercial packaging applications to combat the ever-increasing pollution in highly populated countries. This paper presents a systematic review based on modern scientific tools of the literature available with a major emphasis on the past decade and aims to serve as a standard resource for the development of biodegradable packaging films from food/vegetative waste.


Subject(s)
Food , Refuse Disposal , Humans , Plastics , Recycling
SELECTION OF CITATIONS
SEARCH DETAIL
...