Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Rapid Commun ; 41(18): e2000141, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33463846

ABSTRACT

Poly(n-butyl methacrylate) (PnBMA)/reduced graphene oxide (rGO) nanocomposite films are prepared using two different routes. The first route involves preparation of PnBMA nanoparticles containing homogeneously dispersed rGO nanosheets by miniemulsion polymerization using a block copolymer of ionic liquid (IL) monomer and nBMA. The IL units act as adsorption sites for rGO whereas BMA units provide solubility in the BMA monomer droplets. Nanocomposite films obtained from miniemulsion polymerization exhibit higher tensile modulus in comparison with the films prepared by mixing a PnBMA emulsion and aqueous graphene oxide (GO) dispersion. The second route involves preparation of PnBMA particles armored with rGO nanosheets via miniemulsion polymerization using the same poly(ionic liquid) (PIL) block copolymer. An anionic exchange reaction is conducted to obtain more hydrophilic PIL units in the block copolymer, thus providing adsorption sites of GO nanosheets at the interface of the polymer particles. Subsequent chemical reduction of GO to rGO using hydrazine monohydrate results in formation of a PnBMA/rGO nanocomposite. The resulting nanocomposite film exhibits electrical conductivity (2.0 × 10-3 S m-1).


Subject(s)
Ionic Liquids , Nanocomposites , Graphite , Methacrylates , Polymerization , Polymers
2.
Soft Matter ; 12(17): 3955-62, 2016 05 07.
Article in English | MEDLINE | ID: mdl-27021557

ABSTRACT

Polymeric nanoparticles containing reduced graphene oxide (rGO) nanosheets have been prepared by aqueous miniemulsion radical polymerization of methyl methacrylate (MMA) utilizing poly(ionic liquid) (PIL) as stabilizer to effectively disperse the rGO nanosheets in the monomer phase. The PIL that gave the best results in terms of rGO dispersibility was a block copolymer of the ionic liquid monomer 1-(2-methacryloyloxyethyl)-3-butylimidazolium bis(trifluoromethanesulfonyl)amide ([Mbim][TFSA]) and MMA, the concept being that the MMA units impart solubility in the MMA monomer droplets whereas the IL units act as adsorption sites for rGO. The rGO dispersibility in vinyl monomer was demonstrated to be superior using the above PIL block copolymer compared to the corresponding statistical copolymer or PIL homopolymer. Overall, the approach developed demonstrates how PILs can be employed to conveniently switch (turn ON/OFF) the dispersibility of PIL/rGO via anion exchange reactions, which can be an efficient strategy for synthesis of polymer/rGO nanocomposite materials.

3.
Langmuir ; 32(10): 2331-7, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26908213

ABSTRACT

Poly(ionic liquid) (PIL) particles with a single-hollow structure are prepared by suspension polymerization from monomer droplets consisting of the hydrophobic ionic liquid monomer [2-(methacryloyloxy)ethyl]trimethylammonium bis(trifluoromethanesulfonyl)amide, ethylene glycol dimethacrylate, and n-butyl acetate containing dissolved poly(n-butyl methacrylate). The obtained PIL hollow particles' shells can be changed from hydrophobic to hydrophilic by anion exchange using a LiBr/ethanol solution. In the case of hydrophilic PIL hollow particles, the water-soluble fluorescent materials can penetrate into the hollow structure, whereas in the case of hydrophobic PIL hollow particles, penetration of the fluorescent materials is restricted. In addition, the encapsulated water-soluble materials can be preserved into the hollow part by changing the shell property of the PIL particle encapsulated with the water-soluble materials from hydrophilic to hydrophobic.

4.
Langmuir ; 31(2): 674-8, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25541088

ABSTRACT

Janus particles with two hemispheres having different stabilizers, a polystyrene (PS) phase stabilized by poly(acrylic acid) (PAA) (PS(PAA)) and a poly(methyl methacrylate) (PMMA) phase stabilized by poly(vinylpyrrolidone) (PVP) (PMMA(PVP)), were synthesized by the solvent-absorbing/releasing method of PS(PAA)/PMMA(PVP) composite particles with a core-shell structure. The PS(PAA)/PMMA(PVP) composite particles were prepared by seeded dispersion polymerization of MMA using PVP as stabilizer in the presence of PS seed particles stabilized by PAA. We also demonstrated the facile formation of the colloidal chains via hydrogen bonding interaction between different stabilizers.


Subject(s)
Polymers/chemistry , Hydrogen Bonding , Polymerization , Polymethyl Methacrylate/chemistry , Polystyrenes/chemistry , Surface Properties
5.
Langmuir ; 30(12): 3406-12, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24655108

ABSTRACT

Emulsion polymerization of ionic liquid monomer [2-(methacryloyloxy)ethyl]trimethylammonium bis(trifluoromethanesulfonyl)amide ([MTMA][TFSA]) was performed. In the presence of potassium persulfate and sodium dodecyl sulfate as the ionic initiator and emulsifier, respectively, the system was colloidally unstable and coagulated, owing to anion exchange between the ionic liquid monomer and ionic emulsifier. When a nonionic initiator and emulsifier were used (2,2'-azobis 2-methyl-[1,1-bis(hydroxymethyl)-2-hydroxyethylpropionamide]; VA-080, polyoxyethylenesorbitan monooleate; Tween 80, respectively), a stable emulsion was obtained without coagulation, and the zeta potential of the prepared particles exhibited a high positive charge. Utilizing this surface charge, poly([MTMA][TFSA]) (PIL) particles were then successfully prepared via emulsifier-free emulsion polymerization without an ionic initiator. Moreover, the contact angle of water on the PIL emulsion film (emulsifier-free emulsion polymerization) was found to be ∼70° (static measurement), indicating that the surface of the PIL film was relatively hydrophobic. The retreating contact angle (∼28°) also indicated water wettability. However, when water was dropped on the PIL film just after the water already on the surface had completely retreated, the PIL film was instantaneously hydrophobic again. This result suggests that responsiveness of the PIL emulsion film was switchable between hydrophobic (in air) and hydrophilic (in water).

6.
Langmuir ; 29(36): 11284-9, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-23931151

ABSTRACT

Seeded dispersion polymerization of the ionic-liquid monomer ([2-(methacryloyloxy)ethyl]trimethylammonium bis(trifluoromethanesulfonyl)amide) ([MTMA][TFSA]) was performed in ethanol by using either polystyrene (PS) or poly(methyl methacrylate) (PMMA) particles as seeds. In the presence of PS seed particles, secondary nucleated poly(ionic liquid) (PIL) particles were formed, and no PS/PIL composite particles were observed. In the case of PMMA seeds particles, the diameters of the obtained particles increased compared to those of PMMA seed particles (without formation of particles that were formed as byproducts), which indicates that the PMMA/PIL composite particles were successfully prepared. Transmission electron microscopy studies of ultrathin cross sections of the PMMA/PIL particles revealed that the obtained particles had a sea-island structure consisting of PIL domains. These results are consistent with the theoretical considerations based on the spreading coefficients calculated from the interfacial tensions.

7.
J Colloid Interface Sci ; 398: 120-5, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23473575

ABSTRACT

The solubility behavior of poly(ionic liquid) (PIL) particles, which were prepared by dispersion polymerization of ([2-(methacryloyloxy)ethyl]trimethylammonium bis(trifluoromethanesulfonyl)amide), [MTMA][TFSA], was observed in detail. The solubility of PILs was varied by changing the counter anion. A PIL with [TFSA] anion does not dissolve in polar solvents such as ethanol; however, a PIL with Br anions does dissolve in ethanol. Upon the addition of LiBr to ethanol solution at high concentrations (>2.5 wt.%), the PIL particles dissolved from their outer surface and the counter anions [TFSA] were replaced with Br anions on the particle surfaces. On the other hand, in the case of the ethanol solutions at low LiBr concentrations (<2.5 wt.%), a specific solubility behavior was observed: domains inside the PIL particles were generated before their dissolution, most likely due to osmotic pressure. Moreover, PIL particles having hollow structures were prepared using this specific solubility behavior.

8.
Macromol Rapid Commun ; 33(13): 1130-4, 2012 Jul 13.
Article in English | MEDLINE | ID: mdl-22434597

ABSTRACT

Micron-sized monodisperse poly(ionic liquid) (PIL) particles, poly([2-(methacryloyloxy)ethyl]trimethylammonium bis(trifluoromethanesulfonyl)amide), were prepared by dispersion polymerization at 70 °C in methanol with poly(vinylpyrrolidone) as a stabilizer. The obtained particle size could be controlled by addition of ethanol to the methanol medium while maintaining narrow monodispersity. The PIL particles exhibit unique properties; they can be observed by scanning electron microscopy without platinum coating, which is generally used to avoid an electron charge. Moreover, the solubility of the PIL particles can be easily changed by changing the counter anion, similar to the process for ionic liquids.


Subject(s)
Ionic Liquids/chemistry , Polymers/chemistry , Particle Size , Polymerization , Polymers/chemical synthesis , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...